Cerberus: Automated Synthesis of Enforcement
Mechanisms for Security-sensitive Business
Processes*

Luca Compagna?, Daniel R. dos Santos"?3, Serena E. Ponta?, Silvio Ranise!

! Fondazione Bruno Kessler (FBK) 2SAP Labs France *University of Trento

Abstract. CERBERUS is a tool to automatically synthesize run-time
enforcement mechanisms for security-sensitive Business Processes (BPs).
The tool is capable of guaranteeing that the execution constraints £C on
the tasks together with the authorization policy AP and the authorization
constraints AC are satisfied while ensuring that the process can success-
fully terminate. CERBERUS can be easily integrated in many workflow
management systems, it is transparent to process designers, and does not
require any knowledge beyond usual BP modeling. The tool works in two
phases. At design-time, the enforcement mechanism M, parametric in
the authorization policy AP, is generated from FC and AC; M can thus
be used with any instance of the same BP provided that EC and AC
are left unchanged. At run-time, a specific authorization policy is added
to M, thereby obtaining an enforcement mechanism M™* dedicated to a
particular instance of the security-sensitive business process. To validate
our approach, we discuss the implementation and usage of CERBERUS in
the SAP HANA Operational Intelligence platform.

1 Introduction

A security-sensitive business process (BP) [1] is a structured collection of tasks,
defining a workflow, equipped with an authorization policy (AP) defining which
users are entitled to execute which tasks, and authorization constraints such
as Separation of Duties (SoD) defining that certain tasks must be executed by
different users. The authorization policy and constraints are crucial to comply
with regulations and prevent frauds. It is, however, of utmost importance to
ensure that business continuity is not endangered, i.e. it must be possible to
complete the process while satisfying the authorization policy and constraints.
As an example, consider the Voting process shown in Figure 1. It is composed
of four tasks (represented by rounded rectangles), Request Voting (t1), Moderate
e-mail discussion (t2), Moderate conference call (t3) and Validate Voting (t4),
and two SoD constraints (dashed lines labeled by #), which impose that the
user who executes t2 (3, resp.) cannot also execute t3 (¢4, resp.). Examples of
valid execution scenarios, i.e. assignments of users to tasks such that the process

* This work has been partly supported by the EU under grant 317387 SECENTIS
(FP7-PEOPLE-2012-1TN).

can terminate and constraints are satisfied, are t1(C'),t2(A),t3(B),t4(A) and
t1(A),t3(B),t2(C), t4(A). Though in this simple process it is easy to determine
whether there exist valid execution scenarios, for complex BP with more con-
straints and expressive policies this is not the case. Establishing whether all tasks
can be executed while satisfying the authorization policy and without violating
any authorization constraints is known as the Workflow Satisfiability Problem
(WSP), whose solution is NP-hard already in presence of one SoD constraint [9].
The problem becomes even more complex if we consider the run-time version of
WSP that consists in answering user requests to execute a task while ensuring
successful termination together with the satisfaction of authorization constraints.
As an example consider that at run-time t1 has been performed by A, and B is
requesting to execute t2. Although B is entitled to do so by the authorization
policy and ¢2 is not in SoD with any task B executed in the past, granting this
request would break business continuity. In fact A would be the only user entitled
to execute t3 because of the SoD between t2 and t3, but then no user would
be able to execute t4 without violating the SoD with ¢3. In [3] a technique was
introduced to automatically synthesize, from security-sensitive BPs, enforcement
mechanisms that solve the run-time WSP.

In this paper we present CERBERUS!, a tool that relies on [3] to automatically
synthesize at design-time enforcement mechanisms capable of guaranteeing at run-
time that the workflow can terminate while satisfying the authorization policy and
the authorization constraints. The synthesized mechanisms are parametric in the
authorization policy so that they can be combined at run-time with authorization
policies dedicated to different instances of the process. CERBERUS can be easily
integrated in many workflow management systems, it is transparent to process
designers, and does not require any knowledge beyond usual BP modeling.
To demonstrate the tool, we integrated it into the SAP HANA Operational
Intelligence platform? (OplInt) which offers a BPMN modeling and enactment
environment.

2 Tool Architecture and Implementation

A reference architecture for Workflow Management (WFM) systems [10] is
composed of the five blue elements shown in Figure 2. Workflow Modeling is a
graphical user interface for a Process Designer to create workflow models using
a modeling language such as BPMN or YAWL (see, e.g., [10]). The models are
stored in a Workflow Model Repository, while the Workflow Engine interprets
the models and directs the execution to the Invoked Applications, in the case of
system and script tasks, or to a Graphical User Interface (GUI), in the case of
user tasks, which are performed by Process Participants.

1 Cerberus is a three-headed watchdog in Greek mythology, with the first head associ-
ated to the past, the second to the present and the third to the future. CERBERUS
acts as a monitor that takes into account the history of executions, the current
authorization relation and future executions to grant or deny requests.

2 https:/ /help.sap.com/hana-opint

Symbolic
Model
Checker

Monitor Monitor)
Synthesizer H Repository }——Il Monitor l

A 4 |

%equest

voting (t1)

sn1eqJe)

Voting (t4) [

l‘—I’Moderate
conference

LV N S ;o [| |
Workflow g
ot . Workflow | Graphical =
Users Authorization policy Note: arrows represent Modeling Modgl i | |user Interface S
A (Alice) 1 ABC sequential and Repository S
B (Bob) 2 AB,C gateways (diamonds Process Participant §
C (Charlie) 3 AB Iabeled by "+") represent the v — [%
4 A parallel execution of tasks i Al
Process Designer
Design-time Run-time
Fig. 1: Voting Process Fig. 2: Tool Architecture

On top of the WFM components, we add the CERBERUS components shown
in red in Figure 2. The Monitor Synthesizer is responsible for interpreting the
workflow model and translating it into a transition system format accepted by a
Symbolic Model Checker capable of computing a reachability graph whose paths
are all possible executions of the workflow. Note that only the workflow model
(representing the execution constraints) extended with authorization constraints
is input to the monitor synthesis. This allows the synthesized monitor to support
different authorization policies at run-time. The reachability graph is translated
into a language such as Datalog or SQL and stored in the Monitor Repository.
The Monitor itself sits between the GUI and the workflow engine and grants or
denies user requests to execute tasks (users only access tasks through the GUI
and automatic tasks are not part of the authorization policy or constraints 3).

The main goals in the design of CERBERUS are usability, scalability and mini-
mal interference with pre-existing functionalities. Usability is achieved because
the tool is fully automated and all the formal details are hidden from the process
designer, who only has to input the workflow model with a set of constraints
that he/she wishes to be enforced (which can be done graphically). Scalability is
ensured by the use of modular monitor synthesis (decomposing workflows into
components, synthesizing monitors for them and combining the results [4]) and
minimal interference is guaranteed by using the tool as a plug-in, so that both
monitor synthesis and enforcement can be easily activated or deactivated.

The CERBERUS implementation is built on top of Oplnt to synthesize, store,
combine and retrieve run-time monitors for security-sensitive workflows therein
modeled and enacted. HANA Studio is the IDE that acts as the Workflow Mod-
eling component, while the HANA Repository implements both the Workflow
Model Repository and the Monitor Repository. We added the constraint specifica-
tion and monitor synthesis capabilities in the IDE and used MCMT [6] as the
Symbolic Model Checker. The Monitor Synthesizer is written in Python (core

3 This is a limitation of the current implementation. Nonetheless the approach is able
to monitor any task subject to an authorization policy.

algorithms) and JavaScript (IDE and repository integration). The monitors are
output in SQL as a view that is queried by the execution engine. The Workflow
Engine differs from traditional WFM systems because Oplnt does not directly
execute the BPMN models, but instead translates them to executable artifacts
(JavaScript and SQL code) that manage and perform the tasks in the workflows.
The invoked applications are handled by SQL procedure calls and the GUI for
user tasks is integrated in a web task management dashboard.

Since we build on top of a reference architecture, other possible implemen-
tations of CERBERUS could use open-source versions of the WFM components.
The advantage of Oplnt is to have all the components in the same platform.

3 Using Cerberus

The usage of the tool involves four steps: design-time specification, monitor
synthesis, deployment, and run-time enforcement. SAP HANA is an in-memory
relational database, so the BPMN artifacts and the monitors are translated to
SQL. There is a long tradition of works using relational languages, such as Datalog
and SQL, to express role-based access control and other authorization policies [7].
Moreover, we use database tables to store the users (USERS), authorization policy
(AP) and execution history (HST).

At design-time, a process designer uses the HANA Studio IDE to model
the control-flow and authorization constraints of a workflow. Authorization
constraints are not part of standard BPMN, and there are many proposed
extensions to accommodate them, but we simply use task documentation to
input the constraints in textual form. This can be changed in the future so
that constraints are specified as graphical elements. Authorization policies are
specified by linking each task to an assignment table in the database, which
is only populated at deployment-time. When design is complete, the model is
translated to SQL by pressing a button in the IDE.

To model the example of Figure 1, a process designer uses the IDE to create a
new BPMN file and graphically drags, drops and connects the required elements:
start and end events (the circles in the figure), user tasks (rounded rectangles),
sequence flows (solid arrows) and parallel gateways (diamonds labeled by +).
The authorization constraints are input in the documentation of the second and
third tasks, the authorization policy is linked to the AP database table (which is
empty at the moment) and the task Uls are linked to web pages.

The monitor synthesis runs in parallel with the BPMN-to-SQL compiler
and is completely transparent to end users. When the monitor synthesizer receives
a request to generate a monitor, the BPMN model file (in XML) is read from the
repository and translated to a symbolic transition system that is fed to the SMT-
based MCMT model checker. The model checker applies a backward reachability
procedure and returns a reachability graph that represents all possible executions
of the workflow by symbolic users, which are introduced by the model checker
itself to represent placeholders for concrete users that are specified at deployment
time in the USERS table. The reachability graph is composed of nodes labeled

by first-order formulae representing sets of states and edges representing the
execution of tasks by users, with each path representing a possible terminating
execution of the system. The formulae encode the conditions that must be met
for a user to execute a task and they use an interface to the authorization policy
and history of execution that will be realized at run-time as the database tables
AP and HST, respectively. The monitors are thus parametric in the authorization
policy, which means that the same monitor needs to be generated only once for
each workflow model, regardless of the run-time policy that is deployed with it.
In [3], a procedure is described which takes a symbolic transition system and
returns a Datalog program whose clauses are a conjunction of literals built out of
the state variables in the transition system such that user u can execute task ¢ and
the workflow can successfully terminate iff can_do(u,t) is a logical consequence
of the Datalog program with a specific authorization policy and history. The
Datalog monitors are then further translated to SQL views that can be queried
by the execution engine (aggregation-free SQL and non-recursive Datalog with
negation are equivalent and the translation is straightforward [8]). The resulting
SQL view, using the database tables representing users, authorization policy and
history of execution, is stored in the repository and queried at run-time by the
execution engine. The synthesized monitors are modular and can be composed
to form more complex monitors, as described in [4]. This allows us to alleviate
the state space explosion problem and handle large workflows by decomposing
them into smaller modules.

In the example of Figure 1, the monitor consists of an SQL view defined by
a procedure containing, among others, the following query for ¢2 (simplified for
the sake of clarity):

SELECT U2.ID FROM USERS AS U1, USERS AS U2 WHERE HST.dt1 = 1 AND HST.dt2 = 0
AND HST.dt3 = 1 AND HST.dt4 = O AND (U1.ID <> U2.ID) AND NOT HST.t3by =
U1.ID AND NOT HST.t3by = U2.ID AND U2.ID IN (SELECT ID2 FROM AP) AND U1l.
ID IN (SELECT ID4 FROM AP)

which encodes the fact that, to execute ¢2, the system must be in a state where
t1 and ¢3 have been executed, but neither ¢2 nor t4 (dt1 = 1 AND dt2 = O AND
dt3 = 1 AND dt4 = 0), there must be a user ul who can execute t2 (SELECT
ID2 FROM AP), and a different user u2 (U1.ID <> U2.ID) who can execute t4
(SELECT ID4 FROM AP) and neither user should have executed ¢3 because of the
SoDs between t2 and t3 and between ¢3 and ¢4 (NOT t3by = U1.ID AND NOT
t3by = U2.ID). Other queries for {2 and all queries for other tasks have been
omitted for the lack of space.

For the deployment of a workflow it is necessary to specify the concrete
authorization policy by populating the linked database tables. End users manage
workflows using a generated API.

At run-time, there is a running job responsible for calling the next tasks
based on tokens stored in the database, whose flow is specified by the control-flow
in the BPMN model. When a human task is executed, the monitor associated
to the workflow is called into action by the automatic invoking of a procedure
from the task UI. To grant or deny a request, the monitor queries the USERS, AP

and HST tables described above to ensure that the requesting user is entitled to
perform the task, the user has or has not performed another conflicting task, and
the execution of this task will not prevent the satisfaction of the workflow (as
shown in the example query above).

Examples of valid execution scenarios and run-time enforcement for the
process in Figure 1 are given in the Introduction.

4 Discussion

CERBERUS is under development and it has been validated with real-world and
synthetic examples [3,4]. Currently, the tool is not available for public use, but
business units at SAP showed interest in the Oplnt integration and discussion
about pilot projects with customers is going on. It is possible to use the CERBERUS
architecture with other components, as described in Section 2, and we already
have implementations of the Monitor Synthesizer for Prolog, pyDatalog and
MySQL, but there is no integration with other WFM systems. This work is
related to runtime verification [5] and tools that address the WSP. The closest
related work is [2], which presents a workflow monitor that considers policies and
constraints and uses pre-existing IBM components; it does not, however, solve
the WSP. As future work, we intend to encourage and study the use of the tool
in more real-world scenarios and, leveraging the ideas in [4], build a repository of
components with synthesized monitors that can be reused by business designers.

References

1. A. Armando and S. E. Ponta. Model Checking of Security-sensitive Business
Processes. In Proc. of FAST, 2009.

2. D. Basin, S. J. Burri, and G. Karjoth. Dynamic enforcement of abstract separation
of duty constraints. ACM TISSeC, 15(3):13:1-13:30, November 2012.

3. C. Bertolissi, D. R. dos Santos, and S. Ranise. Automated synthesis of run-time
monitors to enforce authorization policies in business processes. In ASIACCS, 2015.

4. D. R. dos Santos, S. Ranise, and S. E. Ponta. Modularity for security-sensitive
workflows. In arXiv, 2015.

5. Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verification. Engi-
neering Dependable Software Systems, 34:141-175, 2012.

6. S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In IJCAR,
volume 6173 of LNCS, 2010.

7. P. Samarati and S. de Vimercati. Access control: Policies, models, and mechanisms.
In FOSAD, volume 2171 of LNCS, pages 137-196. Springer, 2001.

8. G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with recursive
queries in database and logic programming systems. Theory Pract. Log. Program.,
8(2):129-165, March 2008.

9. Q. Wang and N. Li. Satisfiability and resiliency in workflow authorization systems.
TISSeC, 13:40:1-40:35, December 2010.

10. M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

