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Abstract. In previous work, we showed how to use an SMT-based
model checker to synthesize run-time enforcement mechanisms for busi-
ness processes augmented with access control policies and authorization
constraints, such as Separation of Duties. The synthesized enforcement
mechanisms are able to guarantee both termination and compliance to
security requirements, i.e. solving the run-time version of the Workflow
Satisfiability Problem (WSP). No systematic approach to specify the
various constraints considered in the WSP literature has been provided.
In this paper, we first propose a classification of these constraints and
then show how to encode them in the declarative input language of the
SMT-based model checker used for synthesis. This shows the flexibility of
the SMT approach to solve the run-time version of the WSP in presence
of different authorization constraints.

1 Introduction

A security-sensitive business process (BP) is a structured collection of tasks,
defining a workflow, equipped with an authorization policy defining which users
are entitled to execute which tasks, and authorization constraints such as Sepa-
ration or Binding of Duties (SoD or BoD) defining that certain tasks must be
executed by different users, or the same user, respectively. The authorization
policy and constraints are crucial to comply with regulations and prevent frauds.
It is, however, of utmost importance to ensure that business continuity is not
endangered, i.e. it must be possible to complete the BP while satisfying the
authorization policy and constraints. Finding the best possible trade-off between
security and business continuity for BPs is called the Workflow Satisfiability
Problem (WSP) [6,16,4,7].

There are business rules, regulations, and policies that either cannot be
encoded or are very difficult to encode by using simple SoD/BoD constraints [15].
Some examples are: requiring that a user executes only a certain number of
tasks or requiring that users from different (or the same) departments execute
a set of tasks. Even more complex policies involving conflicts of interest [26],
confidentiality [5], and integrity [8] require data-based constraints. These practical
needs have motivated the definition of different types of authorization constraints.
In the literature, a variety of authorization constraints have been considered but
no systematic classification has been given. Additionally, the proposed approaches
to solve the WSP only support certain classes of authorization constraints.



Related work. The seminal work of Bertino et al. [6] described the specification
and enforcement of authorization constraints in workflow management systems,
presenting constraints as clauses in a logic program and an exponential algorithm
for assigning users and roles to tasks without violating them, but considering only
linear workflows. Tan et al. [29] defined a model for constrained workflow systems
that includes constraints such as cardinality, SoD and BoD. They specified a
workflow as a partial order on the set of tasks; and a constrained workflow
authorization schema, associating roles to tasks. Crampton [14] extended these
ideas by defining Type 1 constraints, and developing an algorithm to determine
whether there exists an assignment of users to tasks that satisfies the constraints.

Wang and Li. [31] proposed a role-and-relation based access control model
to describe the relationships between users and specify complex authorization
constraints. The authors reduced the WSP to SAT, showed that it is NP-complete
in authorization systems supporting simple constraints and that it is fixed-
parameter tractable (FPT) with only BoD and SoD.

Crampton et al. [17] showed that the WSP remains FPT with counting and
equivalence constraints. Later [16], they used logical combinations of constraints
to support conditional workflows and Type 3 constraints by splitting one instance
of the problem into several instances. Cohen et al. [11] solved the WSP using
techniques for the Constraint Satisfaction Problem, which allowed the authors to
devise a general algorithm that works for several families of constraints. Cohen
et al. [12] demonstrated the practicality of the previously designed algorithm by
adapting it to the class of user-independent counting constraints and showing
its superiority when compared with the classical SAT reduction of the problem.
Crampton et al. [15] showed that the WSP remains FPT for class-independent
constraints and provided an algorithm to solve it. Crampton et al. [18] used
model checking on an NP-complete fragment of LTL to synthesize and validate
plans for security-sensitive workflows and argued that this approach is more
robust, uniform, and expressive than previous formalizations.

Li and Wang introduced the Separation of Duties Algebra (SoDA) [25] to
express and formalize policies based on users’ attributes and the number of users
executing tasks. The policies are enforced by low-level mechanisms such as static
and dynamic SoD in RBAC [27]. Basin et al. [3] generalized SoDA’s semantics
to workflow traces and refined it for control-flow and role-based authorizations,
implementing a SoD enforcement monitor for workflow engines. Later [4], the
same authors used Hoare’s Communicating Sequential Processes (CSP) to model
workflows in two levels: control-flow and task execution, allowing them to synthe-
size monitors that enforce at run-time obstruction-free, or satisfying, workflow
executions.

This work. Our previous approaches to solve the WSP [7,21,13] use an SMT-
based model checker to synthesize run-time enforcement mechanisms for business
processes augmented with access control policies and SoD/BoD constraints. We
focused on these constraints because those works were developed in collaboration
with SAP. SAP was mainly interested in SoD/BoD because these constraints are
the most widely used by their customers. In this paper, we show how to extend



our previous encoding of authorization constraints to handle a large number
of constraints that we have encountered in the literature and classified. After
providing the background concepts on the WSP (Section 2), we propose the
first classification of authorization constraints (Section 3). Then, show how to
encode them in the declarative input language of an SMT-based model checker
(Section 4.3) that is used in a tool called Cerberus (Section 4.2), which is capable
of solving the run-time version of the WSP. The tool has been integrated in an
industrial framework for workflow management of SAP (Section 4.1). We finish
by drawing some conclusions and discussing related and future work (Section 5).

2 Background

Let T be a finite set of tasks and U a finite set of users. A scenario is a finite
sequence of pairs of the form (t, u), written as t(u), where t ∈ T and u ∈ U . The
intuitive meaning of a scenario η = t1(u1), . . . , tn(un) is that task ti is executed
before task tj for 1 ≤ i < j ≤ n and that task tk is executed by user uk for
k = 1, . . . , n. A workflow W (T,U) is a set of scenarios. There are various ways
to specify security-sensitive workflows. For instance, [17] introduces the notion
of “constrained workflow authorization schema,” [4] uses CSP, and many works
use (extensions of) Petri nets. We adopt the last approach, as it is one of the
standard ways to formalize the semantics of workflows specified in BPMN [20].
We illustrate the specification of a security-sensitive workflow in (a variant of)
BPMN using an example.

Example 1. The left side of Figure 1 shows a simple Loan Origination Process,
with fours tasks: Request Loan (t1), Evaluate External Credit Rating (t2), Evaluate
Internal Credit Rating (t3), and Approve Loan (t4). Task t1 has to be executed
first, followed by t2 and t3 (in any order), followed by t4, so the behaviors
t1, t2, t3, t4 and t1, t3, t2, t4 are allowed, whereas, e.g., t1, t4, t3, t2 is not (where
t1, . . . , tn represents a sequence of n tasks executed in order, i.e. ti+i is executed
after ti). Now imagine that t3 is only executed for loans of more than 10k Euro,
then behavior t1, t2, t4 becomes allowed, but only for some instances (those where
the data object “loan amount” is less than 10k). If the organization running this
workflow adopts the authorization policy shown at the center of the Figure and
the SoD constraints between t2 and t3 and between t3 and t4 (shown as dashed
lines labeled by 6= in the Figure), then any behavior containing, e.g., t2(a) and
t3(a) is not allowed (where t(u) means that user u executes task t).

The right side of Figure 1 shows the extended Petri net that can be automat-
ically derived from the BPMN on the left side and that represents its semantics
(see, e.g., [20,7]). Tasks are modeled as transitions or events (the boxes in the
Figure) whereas places (the circles in the Figure) encode their enabling conditions.
At the beginning, there will be just one token in place p0 which enables the
execution of transition t1. This corresponds to the execution constraint that task
t1 must be performed before all the others. The execution of t1 removes the
token in p0 and puts a token in p1 and another in p2; this enables the execution



Fig. 1. Loan Origination Process in BPMN (left) and as a Petri net (right)

of t2 and t3. Indeed, this corresponds to the causality constraint that t2 and t3
can be executed in any order after t1 and before t4. The executions of t2 and t3
remove the tokens in p1 and p2 and put a token in p3 and one in p4, which, in
turn, enables the execution of t4. This removes the token in p3 and p4 and puts
a token in p5, which enables no more transitions. This corresponds to the fact
that t4 is the last task to be executed. ut

Among the scenarios in a workflow, we are interested in those that describe
successfully terminating executions in which users execute tasks satisfying the
authorization constraints and the authorization policy. Since the notion of suc-
cessful termination depends on the definition of the workflow (e.g., in case of a
conditional choice, we will have two acceptable execution sequences according
to the Boolean value of the condition), in the following we focus only on the
authorization policy and the authorization constraints while assuming that all
the scenarios in the workflow characterize successfully terminating behaviors.

Given a workflow W (T,U), an authorization relation TA is a sub-set of U ×T .
Intuitively, (u, t) ∈ TA means that u is authorized to execute task t. We say that
a scenario η of a workflow W (T,U) is authorized according to TA iff (u, t) is
in TA for each t(u) in η. An authorization constraint over a workflow W (T,U)
can be seen as a pair (T ′, Θ), where T ′ ⊆ T is called the scope of c and Θ is a
set of functions θ : T ′ → U [15]. The functions in Θ specify the assignments of
tasks to users that satisfy the constraint. Instead of enumerating every function
θ ∈ Θ, it is common to define Θ implicitly by using a specification device. A
catalog of such devices is presented in Section 3 below. Let C be a (finite) set
of authorization constraints, a scenario η satisfies C iff η satisfies c, for each
c in C. A scenario η of a workflow W (T,U) is eligible according to a set C of
authorization constraints iff η satisfies C.

The problems raised by the conflicting goals of business compliance and
business continuity are further complicated by the interplay between control-flow,
data-flow, and authorization. Notice that a common practice in the analysis of
workflow satisfiability is to abstract away from parts of a workflow specification.
No work besides [7] takes into account the data-flow (some completely disregard it,
e.g., [15], and some model it with non-deterministic decisions, e.g., [4]). It is also
common to limit the allowed control-flow constructs and supported authorization
constraints. There are different versions of the WSP and one main distinction is
whether the order of execution of the tasks is taken into account. Crampton [16]
defines a plan π : T 7→ U and a schedule as a tuple (t1, . . . , tk) such that



{t1, . . . , tk} = T and tj 6≤ ti for each 1 ≤ i < j ≤ k. The unordered WSP
admits as solution a valid plan π, whereas the ordered version admits as solution
a plan π with a schedule σ, i.e. the plan must respect the ordering of tasks
defined by the control-flow. The two versions of the WSP are only equivalent for
well-formed workflows [16], i.e. workflows where for all tasks ti and tj that can
be executed in any order, (ti, tj , ρ) ∈ C iff (tj , ti, ρ̃) ∈ C (where ρ̃ is defined as
{(u, u′) ∈ U × U : (u′, u) ∈ ρ}). We define the (Ordered) WSP as follows.

Definition 1 ((Ordered) Workflow Satisfiability Problem (WSP)). Given
a workflow W (T,U), an authorization relation TA, and a set C of authorization
constraints, return (if possible) a scenario η which is authorized according to TA
and eligible according to C.

3 A catalog of authorization constraints

Several classes of authorization constraints for workflows have been identified in
the literature. They can all be used, with some ingenuity, to define the functions
θ ∈ Θ, so they can be recast in the form (T ′, Θ) shown above [11].
Counting constraints are of the form (tl, tr, T

′), where 1 ≤ tl ≤ tr ≤ k. A
plan satisfies a counting constraint if a user performs either no tasks in T ′ or
between tl and tr tasks. One example of counting constraint is (1, 2, {t1, t2, t3}),
which is satisfied if a user u1 executes 0, 1 or 2 tasks among those in {t1, t2, t3}.
Entailment constraints are of the form (T1, T2, ρ), where T1 ∪ T2 = T ′ and
ρ ⊆ U × U . A plan satisfies an entailment constraint iff there exist t1 ∈ T1
and t2 ∈ T2 such that (π(t1), π(t2)) ∈ ρ. Entailment constraints can be further
subdivided in three types. In Type 1 constraints, both sets T1 and T2 are singletons.
In Type 2 constraints, at least one of the sets must be a singleton, whereas in
Type 3 there are no restrictions on the cardinality of sets. Examples of Type 1, 2,
and 3 constraints are ({t1}, {t2}, 6=), ({t1, t2}, {t3}, 6=), and ({t1, t2}, {t3, t4}, 6=),
respectively. The first constraint is satisfied if a user u1 executes t1 and u2
executes t2 (because u1 6= u2). The second and third constraints are satisfied
if u1 executes t1 and u2 executes t3. Those are examples of SoD constraints,
BoD constraints can be similarly defined by using = instead of 6=. A special class
of Type 1 constraints are equivalence-based constraints, of the form (t1, t2,∼),
where ∼ is an equivalence relation on U . A plan satisfies this kind of constraint
if the user who executes t1 and the user who executes t2 belong to the same
equivalence class, e.g., same role (or to different classes for 6∼ constraints).
User-independent constraints c are those where given a plan π that satisfies
c and any permutation φ : U → U , the plan π′ = φ(π(s)) also satisfies c [11].
I.e. user-independent constraints are those whose satisfaction does not depend
on the individual identities of users. The SoD constraints presented so far are
user-independent, whereas a constraint requiring a specific user to perform at
least one task in a set is not user-independent [12].
Class-independent constraints are those whose satisfaction depends only on
the equivalence classes that users belong to [15]. Formally, let c be a constraint,



Fig. 2. Relations between constraint classes

∼ be an equivalence relation on U , U∼ be the set of equivalence classes induced
by ∼, and u∼ ∈ U∼ be the equivalence class containing u. Then, for any plan
π, we can define a function π∼ : T → U∼ as π∼(t) = (π(t))∼. Finally, c is
class-independent for ∼ if for any function θ, θ∼ ∈ Θ implies θ ∈ Θ, and for any
permutation φ : U∼ → U∼, θ∼ ∈ Θ∼ implies φ ◦ θ∼ ∈ Θ∼ [15]. One example
of class-independent constraint is ({t1}, {t2},∼), where the classes induced by
∼ corresponds to departments of a company. This constraint is satisfied if
u(t1) ∼ u(t2), i.e. the user executing t1 and the user executing t2 are in the
same department. Indeed, every equivalence constraint (t1, t2,∼) (or (t1, t2, 6∼))
is class-independent and every user-independent constraint is class-independent
with respect to the identity relation [15].

3.1 Classification of constraints

It is not easy to classify authorization constraints in terms of expressiveness,
partly because there are many different frameworks to express them. For instance,
entailment constraints of Type 3 clearly include those of Types 1 and 2, but
counting constraints can also be used to express some forms of SoD [33], so
entailment and counting constraints are not disjoint (i.e. in some cases, it is
possible to express the same set of behaviors using a counting constraint or an
entailment one). Also, clearly user-independent and class-independent constraints
subsume parts of the other classes, but it is not clear which parts.

Figure 2 shows an attempt to systematically classify some classes of autho-
rization constraints for workflow systems presented in the literature. The Figure
shows the sets Ent . of entailment constraints (the subsets of constraints of Types
1, 2, and 3 are not shown to keep the Figure readable), Count . of counting con-
straints, Eq . of equivalence constraints, CI of class-independent constraints and
UI of user-independent constraints. Naturally, Eq . ⊂ Ent . and CI . ⊂ Ent ., since
an equivalence relation is an instance of a binary relation. The facts UI ⊂ CI
and Eq . ⊂ CI were shown by Crampton et al. [15].

The Figure also shows the following intersections: I1 = Ent . ∩ Count ., I2 =
Eq . ∩ Count ., I3 = Eq . ∩UI , I4 = Count . ∩UI , I5 = Count . ∩ CI . We can



show that these intersections are non-empty by using SoD and BoD constraints
as examples. I1 and I2 are non-empty because SoD and BoD can be specified
using entailment: (t1, t2, 6=) and (t1, 2,=), respectively; counting: (1, 1, {t1, t2})
and (2, 2, {t1, t2}), respectively; or equivalence, since = is an equivalence relation.
I3, I4, and I5 are non-empty because both constraints are user-independent [12],
which also makes them class-independent [15].

To the best of our knowledge, there has never been a comparison between
the expressive power of other frameworks, e.g., SoDA and the constraint classes
defined by Crampton et al.

3.2 Data-based constraints

In business processes, authorization policies and constraints are usually specified
and enforced based on the tasks. But policies and constraints can also be defined
based on data objects. This allows increased expressiveness (policies such as
Chinese Wall [9] cannot be expressed solely on the tasks), as well as simplified
specification (at design-time) and enforcement (at run-time), since some policies
may require many more task-based constraints than data-based ones. Below,
we motivate some well-known classes of data-based policies from the security
literature.
Data authorization refers to a user’s permission to access a data object in a
workflow. An example of the need for data authorization on top of task autho-
rization is to manage conflict of interests (CoI) in contract tender evaluations [2].
In this example, if a user is authorized to perform task Evaluate Tender, but they
work for one of the companies proposing a tender, they should not be authorized
to evaluate the tender of their own company. To perform this task, users should
have permission not only to execute the task, but also to access the tender data.
Chinese Wall is used to prevent the CoI that arises when a user has access to
the data of two competing organizations. To avoid this kind of conflict, the data
is separated into sets representing the classes of conflict and when a user has
access to the data of one of the elements of the set, they cannot access the data
of the other elements. More examples of CoI policies can be found in [26].
Need to know and privacy constraints can be used to block, for instance, the
access to two or more data objects that, taken together, can reveal information
that a single object cannot (e.g., a relation of names of patients and time they
came in with a relation of medical procedures and time they were performed can
be used to identify patients). Need to know means that a user should only know
the minimum amount of information required to complete a task. One example
is that to approve a loan, financial data is required, but not personal data, so the
user who approves the loan should not know the personal data of the applicant.
In this example a constraint could be defined between the data objects personal
data and financial data, so that any user will only have access to one of them.
Other confidentiality [5] and integrity [8] policies can be modeled with data
authorization and data constraints, but they require a separation between read
access and write access. In the low-water-mark integrity policy [8], for instance,
users and data objects have integrity levels (l[·]) and whenever a user reads a



data object, his/her integrity level is updated (l[s]← l[s] ∧ l[o], where ∧ stands
for the glb between integrity levels), whereas writing is permitted if l[o] ≤ l[s].

4 Encoding constraints in Cerberus

We have implemented an approach to solve the WSP by synthesizing run-time
monitors for security-sensitive workflows in a tool called Cerberus [13]. Below,
we first present a high-level overview of the tool and its integration in an industrial
environment. Instead of providing full details, we focus on those aspects that are
relevant to model the authorization constraints considered in Section 3 and show
the termination of monitor synthesis.

4.1 Overview of Cerberus

A reference architecture for Workflow Management (WFM) systems is composed
of the five blue elements shown in Figure 3. Workflow Modeling is a user interface
for a Process Designer to create workflow models in a modeling language, e.g.,
BPMN. Models are stored in a Workflow Model Repository, while the Workflow
Engine interprets the models and directs the execution to Invoked Applications,
in the case of system and script tasks, or to a Graphical User Interface (GUI), in
the case of user tasks, which are performed by Process Participants.

On top of the WFM components, we add the Cerberus components shown
in red in Figure 3. The Monitor Synthesizer is responsible for interpreting the
workflow model and translating it into a transition system format accepted by a
Symbolic Model Checker (SMC) capable of computing a reachability graph whose
paths are all possible executions of the workflow. To solve the WSP, a monitor
needs to look to the current state, the past execution history and possible future
executions to check if there is any possibility to finish the process. Therefore, we
need to be able to pre-compute all possible executions. Notice that pre-computing
a reachability graph in the presence of data values is infeasible, but, as already
mentioned, abstracting away run-time data is standard practice for approaches
solving the WSP. Note that only the workflow model (representing the execution
constraints) extended with authorization constraints is input to the monitor
synthesis. This allows the synthesized monitor to support different authorization
policies at run-time. The reachability graph is translated into a language such as
Datalog or SQL and stored in the Monitor Repository. The Monitor itself sits
between the GUI and the workflow engine and grants or denies user requests to
execute tasks (users only access tasks through the GUI and automatic tasks are
not part of the authorization policy or constraints).

Cerberus is implemented on top of the SAP HANA Operational Intelligence
platform (OpInt)1, which offers a BPMN modeling and enactment environment
to synthesize, store, combine, and retrieve run-time monitors for security-sensitive
workflows therein modeled and enacted. HANA Studio is the IDE that acts as the

1 https://help.sap.com/hana-opint

https://help.sap.com/hana-opint


Fig. 3. The architecture of Cerberus and its interface with a WFM system

Workflow Modeling component, while the HANA Repository implements both the
Workflow Model Repository and the Monitor repository. We added the constraint
specification and monitor synthesis capabilities in the IDE and used mcmt [23]
as the SMC (we explain this choice below). The Monitor Synthesizer is written in
Python (core algorithms) and JavaScript (IDE and repository integration). The
monitors are output in SQL as a view that is queried by the execution engine.
The result of this query is used to grant or deny a user’s request to execute a task.
The OpInt Workflow Engine translates BPMN models to executable JavaScript
and SQL code that manage and perform the tasks in the workflows. The invoked
applications are handled by SQL procedure calls and the GUI for user tasks is
integrated in a web task management dashboard.

The termination of the various modules in Cerberus is obvious, except
for the SMC. Thus, below, we discuss under which hypotheses termination is
guaranteed for this module.

4.2 Run-time monitor synthesis

The Monitor Synthesizer—by invoking the SMC—solves the WSP by synthesizing
run-time monitors capable of ensuring that all executions terminate and autho-
rization constraints in a workflow are satisfied using the approach described in [7].
Here, for lack of space, we focus on the SMC and we discuss the assumptions
under which it is guaranteed to terminate.

The SMC takes as input a symbolic transition system S whose executions
correspond to those of the security-sensitive workflow. S is automatically derived
from the (extended) Petri net defining the semantics of a BPMN specification by
using standard techniques (see, e.g., [28,7]). The symbolic transitions derived in
this way have the following form:

t(z) : enCF ∧ enAuth → actCF ||actAuth (1)



where t(z) identifies a transition t executed by a user identified by the variable z;
enCF and enAuth are enabling conditions (on the control-flow and authorization,
respectively); actCF and actAuth are the effects of the execution of the transition
and || represents a parallel update of variables. The variable z occurs in the
enabling condition enAuth and, possibly, in some of the updates in actAuth .

Example 2. To illustrate, recall Figure 1 and observe that the fact that there
is at most one token per place is an invariant of the Petri net. This allows us
to symbolically represent the net as follows: we introduce a Boolean variable
per place (named as the places in Figure 1) together with a Boolean variable
representing the fact that a task has already been executed (denoted by dt and
if assigned to true implies that task t has been executed). So, for instance, the
enabling condition for the execution constraint on task t1 can be expressed as
p0 ∧ ¬dt1 meaning that the token is in place p0 and transition t1 has not yet
been executed. The effect of executing transition t1 is to assign F (alse) to p0
and T (rue) to p1, p2 and dt1; in symbols, we write p0, p1, p2, dt1 := F, T, T, T .
The other transitions are modeled similarly.

Besides the constraints on the execution of tasks, The Petri net in Figure 1
shows also the same authorization constraints of the BPMN model. These are
obtained by taking into consideration both the access control policy P granting
or denying users the right to execute tasks and the SoD constraints between
pairs of tasks. To formalize these, we introduce two functions at and ht from
users to Boolean, for each task t, which are such that at(u) is true iff u has the
right to execute t according to the policy P and ht(u) is true iff u has executed
task t. Notice that at is a function that behaves as an abstract interface to the
policy P whereas ht is a function that evolves over time and keeps track of which
users have executed which tasks. For instance, the enabling condition for the
authorization constraint on task t1 is simply at1(u), i.e. it is required that the
user u has the right to execute t1, and the effect of its execution is to record that
u has executed t1, i.e. ht1(u) := T (notice that this assignment leaves unchanged
the value returned by ht1 for any user u′ distinct from u). As another example,
let us consider the enabling condition for the authorization constraint on t2:
besides requiring that u has the right to execute t2 (i.e. at2(u)), we also need to
require the SoD constraints with t3 (i.e. ¬ht3(u)). The authorization constraints
on the other tasks are modeled in a similar way.

Table 1. Workflow as symbolic transition system

event enabled action

CF Auth CF Auth

t1(u) p0 ∧ ¬dt1 at1(u) p0, p1, p2, dt1 := F, T, T, T ht1(u) := T

t2(u) p1 ∧ ¬dt2 at2(u) ∧ ¬ht3(u) p1, p3, dt2 := F, T, T ht2(u) := T

t3(u) p2 ∧ ¬dt3 at3(u) ∧ ¬ht2(u) p2, p4, dt3 := F, T, T ht3(u) := T

t4(u) p3 ∧ p4 ∧ ¬dt4 at4(u) ∧ ¬ht3(u) p3, p4, p5, dt4 := F, F, T, T ht4(u) := T



Table 1 shows the formalization of all transitions in the extended Petri net of
Figure 1. The first column reports the name of the transition together with the fact
that it is dependent on the user u taking the responsibility of its execution. The
second column shows the enabling condition divided in two parts: CF, pertaining
to the execution constraints, and Auth, to the authorization constraints. The
third and last column list the effects of the execution of the transition again
divided in two parts: CF, for the workflow, and Auth, for the authorization.

The set of final states can be specified by the following formula:

¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4 ∧ p5 ∧ dt1 ∧ dt2 ∧ dt3 ∧ dt4

saying that there is just one token in p5 and that all tasks have been executed.
The set of initial states can be specified, dually, by the formula:

p0 ∧
∧

i=1,...,5

¬pi ∧
∧

i=1,...,4

¬dti ∧ ∀u.(¬ht1(u) ∧ ¬ht2(u) ∧ ¬ht3(u) ∧ ¬ht4(u))

saying that there is just one token in p0, no task has been executed yet, and no
user has executed any task. ut

After building the symbolic transitions and the formulae defining the sets
of initial and final states, the SMC computes a symbolic representation of the
set of states that are (backward) reachable from the set of final states. In other
words, the WSP is reduced to a reachability problem under the assumption
that no transition can be enabled infinitely often without being executed. This
assumption (called strong fairness in the literature) is considered reasonable in
the context of workflow management [30] since decisions to execute tasks are
under the responsibility of applications or humans.

To compute the fix-point, mcmt (an SMT-based model checker) computes
a directed graph RG = (N,λ,E), called reachability graph, whose edges in E
are labeled by task-user pairs in which users are symbolically represented by
variables and whose nodes in N are labeled—according to the labeling function
λ—by a formula of first-order logic. We omit the details of the construction of the
full reachability graph and point the interested reader to [7]. Here, it is enough
to say that it is built in two steps: a fix-point procedure and a post-processing.
The resulting graph is such that its paths describe all possible executions of a
transition system that terminate and satisfy the authorization constraints. While
the termination of the post-processing step is guaranteed by adopting a suitable
semantics for loops, namely the one based on “release-point semantics” of [10]
which requires to consider only the user who executed the last iteration of the
loop, forgetting all the others), the termination of the fix-point computation for
transition systems with a finite but unbounded number of users is non-obvious.

By using mcmt as the SMC, we get the following two advantages. First, mcmt
is capable of introducing on-demand new (existential) variables to symbolically
represent enough users to satisfy authorization constraints without bounding
their number a priori. Second, the following theorem is an easy consequence of the
results in [22]. Preliminary, generalizing the observations in Example 2, we assume



that the formulae describing the transitions as well as the initial and final sets of
states are built out of a set V of state predicates (whose values evolve over time)
of arity 0 for the places (p0, p1, . . . ) and transitions (dt1, dt2, . . . ) and of arity 1
for tracking the history of which user has executed a certain task (ht1, ht2, . . . );
the set H ⊂ A contains only the history variables ht1, . . . We also permit that
the static predicates (whose values stay constant over time) of arity 1 from a
given finite set A may also occur in such formulae and constitute the interfaces
to the authorization policy. Below, a quantifier-free (existentially or universally
quantified) formula built out of the predicates in a set X ∈ {H,V,A, V ∪ A}
is termed X-quantifier-free (existentially or universally quantified, respectively)
formula.

Theorem 1. mcmt terminates when computing the reachability graph of a sym-
bolic transition system in which transitions are of the form (1) where enCF

is a V -quantifier-free formula, enAuth is a A-quantifier-free formulae, the final
formula is a V -quantifier-free formula, and the initial formula is a conjunction
of a V -quantifier-free formula with a H-universally quantified formula.

Below, we show how Theorem 1 can help showing the termination of SMC on
several classes of authorization constraints in Section 3.

4.3 Encoding constraints

We illustrate the main ideas of our symbolic encoding by considering the SoD
constraint between t3 and t4 in Figure 1. The constraint can be specified as an
additional condition that must hold in every state of the executions of the Loan
Origination Process (LOP): ∀w.¬(ht3(w) ∧ ht4(w)) or, equivalently,

∀w.(¬ht3(w) ∨ ¬ht4(w)) . (2)

To enforce that (2) is satisfied in every state of every possible execution of
the LOP, we can conjoin it with the enabling condition enAuth of each transition
in S. For instance, transition t4 becomes

t4(z) : enCF ∧ at1(z) ∧ ∀w.(¬ht3(w) ∨ ¬ht4(w))→ actCF ||ht4(z) := T

where enCF and actCF abbreviate the symbolic representations of the enabling
condition and effect, of the control-flow. We can eliminate the universal quantifier
by instantiating w with z by using the results in [1], i.e. it is sufficient to consider
the following transition:

t4(z) : enCF ∧ at1(z) ∧ (¬ht3(z) ∨ ¬ht4(z))→ actCF ||ht4(z) := T . (3)

Notice that (3) can be further simplified to

t4(z) : enCF ∧ at1(z) ∧ ¬ht3(z)→ actCF ||ht4(z) := T .

since if t4 has not yet been executed, then ¬ht4(z) must hold (indeed, the last
formula is equivalent to that in the last line of Table 1).



Theorem 2. Let T be the set of transitions of the form

t(z) : enCF ∧ at(z) ∧ ∀w.¬ht′(w)→ actCF ||actAuth (4)

for ht′ in H and T be the set of transitions obtained by instantiating w with z.
Under the same assumptions of Theorem 1, the set of possible executions of T
and T are the same.

This result significantly broadens the scope of applicability of Theorem 1,
thereby enabling Cerberus to cover a large variety of authorization constraints
used in security-sensitive workflows.

Interestingly, similar results can be derived for entailment constraints of the
form (T1, T2, ρ) for T1 and T2 sub-sets of the set of tasks and ρ a binary relation
over the set of users and for counting constraints (tl, tr, T

′) for 1 ≤ tl ≤ tr and T ′

sub-set of the set of tasks. We omit the details, for lack of space, and just explain
how such constraints can be expressed as logical expressions to be conjoined
to the enabling condition enAuth in (1). The first type of constraints can be
expressed by the formula

∀z1, z2.
∨

t1∈T1

∨
t2∈T2

ht1(z1) ∧ ht2(z2)⇒ ρ(z1, z2)

with ρ a relation that can be specified by sentences that are universally quantified
formulae and built out of predicate symbols with equality (no function symbols
are allowed). The second type of constraints can be expressed by the formula

∀UT ′ .

( ∧
t′∈T ′

ht′(ut′)⇒ AtMost(UT ′ , tr) ∧ AtLeast(UT ′ , tl)

)
where UT ′ = {ut′ |t′ ∈ T ′}, AtMost(UT ′ , tr) abbreviates the disjunction of all
formulae of the form ∀UT ′ .

∨
x 6=y∈UT ′ x 6= y for UT ′ ⊆ UT ′ of cardinality tr

and AtLeast(UT ′ , tl) abbreviates the conjunction of all formulae of the form
∃UT ′ .

∧
x6=y∈UT ′ x 6= y for UT ′ ⊆ UT ′ of cardinality tl.

It is also possible to express the data-based authorization constraints of
Section 3.2 by using logical expressions to define the at’s in A, even including
constraints that are history-dependent in a way similar to the ht’s in H. We omit
the details, but emphasize that since the expressions needed to express these
policies are quantifier-free, Theorem 1 applies straightforwardly. Thus, Cerberus
is able to synthesize monitors for security-sensitive workflows containing also
these constraints.

We conclude by observing that Cerberus is capable of synthesizing monitors
for security-sensitive workflows containing a mixture of the classes of constraints
considered above.

5 Conclusion

We have motivated and presented a classification of authorization constraints
in security-sensitive workflows, showed how to encode them in the declarative



input language of an SMT-based model checker, and described applications of
this approach. This work shows the flexibility of the SMT approach to solve the
run-time version of the WSP in the presence of different authorization constraints.
Future work. Instance-spanning constraints [24] restrict what users can do
across several instances of the same workflow (inter-instance), across several
instances of different workflows (inter-process), or across workflows in different
organizations (inter-organization). The most usual case is inter-instance autho-
rization constraints, which have been studied in, e.g., [32]. Since we adopt the
approach of having one monitor for each instance, support for inter-instance
constraints would require a global synchronization of the states of each monitor,
possibly using a global execution history. A possibility would be to design a
central entity to which selected parts of the state of each monitor are commu-
nicated so that it can take the right decision to avoid that some inter-instance
constraint is violated. Indeed, each monitor should ask the decision of the central
entity before taking a decision. Although the design of this central entity may
be challenging, we could take inspiration from cache-coherence protocols (see,
e.g., [19]).
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