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ABSTRACT
Security-sensitive workflows impose constraints on the control-

flow and authorization policies that may lead to unsatisfiable in-

stances. In these cases, it is still possible to find “least bad” ex-

ecutions where costs associated to authorization violations are

minimized, solving the so-called Multi-Objective Workflow Sat-

isfiability Problem (MO-WSP). The MO-WSP is inspired by the

Valued WSP and its generalization, the Bi-Objective WSP, but our

work considers quantitative solutions to the WSP without abstract-

ing control-flow constraints. In this paper, we define variations of

the MO-WSP and solve them using bounded model checking and

optimization modulo theories solving. We validate our solutions

on real-world workflows and show their scalability on synthetic

instances.
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1 INTRODUCTION
A workflow specifies a collection of tasks, whose execution is initi-

ated by humans or software agents executing on their behalf, and

the constraints on the order of execution of those tasks. Security-

related dependencies are specified as authorization policies, stating

which users can execute which tasks, and authorization constraints

imposed on task execution, e.g., Separation of Duties (SoD) whereby

two distinct users must execute two tasks.
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Authorization policies and constraints are crucial to ensure the

security of workflow systems and to avoid errors and frauds [28],

but they may also lead to situations where a workflow instance can-

not be completed because no task can be executed without violating

either the authorization policy or the constraints. These deadlocks

are conflicts between compliance and continuity which may be

resolved by administrators granting additional permissions to users

(thus hindering compliance) or canceling the execution (precluding

continuity). Depending on the scenario, it may be preferable to

guarantee either security or continuity. In all cases, it is desirable

to have “minimal” (in some sense) violations. The Multi-Objective

Workflow Satisfiability Problem (MO-WSP), considered in this pa-

per, amounts to strike the best possible trade-off between security

and continuity while minimizing the costs of violations to a policy

or constraints.

Themain contributions of this paper are the definition and so-

lution of the MO-WSP using Bounded Model Checking (BMC) and

Optimization Modulo Theories (OMT). The MO-WSP is inspired

by the Valued WSP [12] and its generalization, the Bi-Objective

Workflow Satisfiability Problem (BO-WSP) [13], but our work con-

siders quantitative solutions to the WSP with an ordered execution

of tasks, i.e., without abstracting the control-flow constraints. Our

symbolic solution is also able to handle control-flow patterns [33],

such as alternative execution, since we can encode these patterns

directly in the transition system used by BMC (instead of splitting

a workflow into multiple deterministic instances, as in [11, 14]).

The use of off-the-shelf OMT solvers, instead of custom algorithms,

provides a uniform toolkit to explore different optimization modes

(such as Pareto and those based on linear cost functions), thereby

gaining the freedom to evaluate the trade-offs offered by different

optimization strategies.Another contribution is the implementa-

tion and evaluation of the proposed solution on real and synthetic

workflows. The results show that the technique has a good perfor-

mance due to an ingenious encoding of the problem that exploits

the parallel executions of tasks in the workflow.

The rest of this paper is organized as follows. Sec. 2 discusses the

original Workflow Satisfiability Problem and its valued versions;

Sec. 3 presents our solution to the MO-WSP; in Sec. 4, we evaluate

the performance of our solution; Sec. 5 discusses related work; and

Sec. 6 concludes the paper.

2 WORKFLOW SATISFIABILITY
Given the control-flow (e.g., a task should be executed before all

the others) and the authorization constraints (e.g., two tasks should

be executed under the responsibility of two distinct users, known

as Separation of Duties), a (decision) problem is to check for the

existence of an assignment of the tasks to entitled users such that

all the control-flow and authorization constraints are satisfied. In
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the literature, this is called the (ordered version of the) Workflow

Satisfiability Problem (WSP) [34].

Example 2.1. The goal of the Trip Request Workflow (TRW) is to

request trips for employees in an organization. TRW is composed

of five tasks: Trip request (t1), Car rental (t2), Hotel booking (t3),
Flight reservation (t4), and Trip validation (t5). The execution of the
tasks is constrained as follows: t1 must be executed first, then t2, t3
and t4 can be executed in any order, with t4 being an optional task

(only performed for long trips), and when all have been performed,

t5 can be executed. Overall, there are six possible task execution

sequences of length 5, in which the first is always task t1, the last
is always task t5, and—in between—there is any one of the six

permutations of t2, t3 and t4; there are also 2 sequences of length

4: t1, t2, t3, t5 and t1, t3, t2, t5.
The TRW can be modeled in BPMN [35] as shown in Figure 1: the

circle on the left represents the start event (triggering the execution

of the workflow), whereas that on the right represents the end event

(terminating the execution of the workflow), tasks are depicted by

labeled boxes, the constraints on the execution of tasks are shown

as solid arrows for sequence flows and diamonds labeled by ‘+’ for

parallel flows or by ‘X’ for alternative flows.

Besides control-flow constraints, the BPMN in Figure 1 shows

also authorization constraints. The man icon inside the box of a

task t means that t must be executed under the responsibility of a

user u according to an access control policy TA, specified by the

table in Figure 1: a user u is entitled to execute t iff there is a line

of the table in which u is associated with t .
A dashed line labeled by , connecting two tasks t and t ′ denotes

a Separation of Duties (SoD) constraint (see, e.g., [10]), i.e. there

must exist two distinct usersu,u ′ ∈ U such thatu executes t andu ′

executes t ′. SoD constraints are typically used to prevent frauds. In

Figure 1, five SoD constraints are depicted, requiring the following

pairs of tasks to be executed by distinct users in any sequence of

task executions of the workflow: (t1, t2), (t1, t4), (t2, t3), (t2, t5),
and (t3, t5). �

To formalize the WSP, we need to introduce some preliminary

notions. Given a finite set T of tasks and a finite set U of users,

an execution scenario (or, simply, a scenario) is a finite sequence of
pairs of the form (t ,u)—also written as t(u)—for t ∈ T and u ∈ U .

The intuitive meaning of a scenario η = t1(u1), . . . , tn (un ) is that
task ti is executed before task tj for 1 ≤ i < j ≤ n and that task

tk is executed by user uk for k = 1, . . . ,n. Among the scenarios in

a workflow, we are interested in those that describe successfully

terminating executions. Since the notion of successful termination

depends on the application, from now on we consider only suc-

cessfully terminating behaviors scenarios. A workflowW (T ,U ) is a

(finite) set of scenarios. To illustrate, consider the TRW in Exam-

ple 2.1 and let TRW (T ,U ) be its formalization. Then, among the

following scenarios:

η1 = t1(a), t2(a), t3(c), t4(a), t5(b); η4 = t1(c), t3(c), t2(a), t5(b)

η2 = t1(c), t2(a), t3(c), t4(a), t5(b); η5 = t1(a), t2(b), t3(b);

η3 = t1(a), t3(c), t2(a), t5(b); η6 = t2(b), t3(b), t4(a), t5(b);

only η1, . . . ,η4 are in TRW (T ,U ) because they represent sequences

of task executions that are compliant with the BPMN in Figure 1;

whereas η5 and η6 cannot be in TRW (T ,U ) as the execution of task

t5 and of task t1, respectively, is missing and thus the scenarios are

not compliant with the BPMN specification.

Given a workflow W (T ,U ), an authorization relation TA is a

sub-set of U × T where (u, t) ∈ TA means that u is entitled to

execute task t . Following [15], we call authorized a scenario η of

a workflow W (T ,U ) according to TA iff (u, t) is in TA for each

t(u) in η. For instance, η1 and η3 are authorized, whereas η2 and
η4 are not (since (c, t1) < TA). An authorization constraint over a
workflowW (T ,U ) is a tuple (t1, t2, ◃▹) where t1, t2 ∈ T and ◃▹ is a

sub-set of U ×U . For instance, a SoD constraint between tasks t
and t ′ can be formalized as (t , t ′,,) with , being the complement

of the identity relation over U . A scenario η ofW (T ,U ) satisfies
the authorization constraint (t1, t2, ◃▹) overW (T ,U ) iff for t1(u1)
and t2(u2) in η we have that (u1,u2) ∈◃▹. Let K be a (finite) set of

authorization constraints, a scenario η satisfies K iff η satisfies each

constraint of K . Again following [15], we call eligible (according
to a set K of authorization constraints) a scenario η of a workflow

W (T ,U ) iffη satisfiesK . For instance,η2 andη4 are eligible, whereas
η1 and η3 are not (since there is a SoD between t1 and t2, but they
are executed by the same user, a).

Following [3], we call security-sensitive workflow (SSW ) the triple

(W (T ,U ), TA,K)whereW (T ,U ) is a workflow, TA an authorization

relation, and K a (finite) set of authorization constraints. The SSW

(W (T ,U ), TA,K) defines a sub-set of the scenarios inW (T ,U ) that

are both authorized with respect to TA and eligible with respect to

K .
Given a SSW (W (T ,U ), TA,K), the WSP consists of checking

whether there exists an execution scenario in W (T ,U ) which

is both authorized and eligible. To illustrate, consider again the

Example 2.1: it is easy to verify that the execution scenarios

η1, . . . ,η4 presented above are not solutions to the WSP because

they are either not authorized or not eligible. On the other hand,

t1(b), t3(c), t4(a), t2(a), t5(b) is both authorized (with respect to the

TA shown in the table of Figure 1) and eligible (with respect to the

five SoD constraints shown in the figure), and is thus a solution to

the WSP.

2.1 Multi-objective Workflow Satisfiability
The solvability of the WSP provides some evidence about the pos-

sibility to find the best trade-off between security (by satisfying

all authorization policies and constraints) and business continuity

(by considering only successfully terminating executions). In some

situations, this may be too restrictive. For instance, if we delete the

lines containing (a, t2) and (b, t2) from the table in Figure 1 speci-

fying the authorization policy (imagine that users a and b cannot

access the TRW for some reason), the WSP for the TRW is no more

solvable since no user is entitled to execute task t2. For the sake
of business continuity, it would be important to understand which

users can execute task t2 (despite none being entitled to do so) to

ensure termination while minimizing security issues. This becomes

possible as soon as we define the cost of violating an authorization

policy and, in the general case, an authorization constraint.

Example 2.2. Recall the authorization policy TA defined in Ex-

ample 2.1. Let TA′
:= TA \ {(a, t2), (b, t2)}. Following [12], we

introduce a cost functionwP such thatwP (u, t) = 1 if (u, t) < TA′

and wP (u, t) = 0 if (u, t) ∈ TA′
. The idea is to associate a cost of



Figure 1: TRW in BPMN with an associated authorization policy

one to the situation in which a user executes tasks which they

are not entitled to execute according to TA′
; instead, if users are

entitled to execute tasks, then the cost is zero since there is no

violation of the policy TA′
. To measure the cost of the violations to

the policy TA′
over the execution of an entire scenario, a possibility

is to take the sum of the costs of each violation (if any); formally,

wP (η) = Σ(u,t )∈ηwP (u, t). We are now interested to find the scenar-

ios in TRW (containing task t4) that minimize the cost functionwP .

For instance, the two scenarios η1 = t1(b), t3(c), t4(a), t2(a), t5(b)
and η2 = t1(b), t3(c), t4(b), t2(a), t5(b) are such that wP (η1) =
wP (η2) = 1. Notice that one is the optimal cost as there is no

scenario η′ such thatwP (η
′) < 1.

In the same spirit, we can introduce an additional cost function

wC for the authorization constraints in K such thatwC (η) is equal
to the cardinality of the set {k ∈ K | η does not satisfy k} where K
contains the SoD constraints of Figure 1. Intuitively,wC counts how

many authorization constraints are violated by the scenario under

consideration; in the case of the TRW, this means to identify all

pairs (u, t) and (u, t ′) such that (t , t ′,,) ∈ K . We are then interested

to find the scenarios in TRW that minimize both cost functionswP
andwC . There are several reasonable ways to solve this problem.

For instance, one can minimize the combined cost of wP and wC
(e.g., by taking their sum) or minimize each one of them. In the

first case, the execution scenario η2 above has a cost of 2 (1 for the
violation w.r.t. TA and 1 for the violation w.r.t. K ) whereas η1 has a
cost of 1 (as there is a violation w.r.t. TA and none w.r.t. K ). In the

second case, η2 has a cost of (1, 1) whereas η1 has a cost of (1, 0).
Thus, η1 is an optimal solution with respect to both criteria. �

In some situations, it may be unclear which solutions to consider

as optimal. Consider, for instance, the criterion of minimizing the

two cost functions at the same time and the situation in which

two scenarios have costs (1, 2) and (2, 1), respectively: the former is

better than the latter with respect to the first cost function, but it is

worse with respect to the second cost function. An obvious question

arises: which solution should be preferred? In order to address this

kind of questions, we have decided to define a quantitative version

of the WSP, by borrowing some notions from the framework of

Multi-Objective Optimization (MOO) problems [30].

Indeed, the main goal of MOO techniques is to simultaneously

optimize a collection of cost functions. In general, this is impossible

since (as shown in the example above) a solution that minimizes one

cost may not minimize another. In general, for any non-trivial MOO

problem, there is no single solution that is simultaneously optimal

for every objective. Instead, there may exist (possibly infinitely)

many solutions that can be considered equally good, called Pareto

optimal (see, e.g., [30]). Formally, a scenario η∗ is Pareto optimal

iff there is no scenario η , η∗ such thatwC (η) ≤ wC (η
∗),wP (η) ≤

wP (η
∗), andwC (η) < wC (η

∗) orwP (η) < wP (η
∗). I.e. a scenario is

Pareto optimal if there does not exist another scenario that improves

one cost function without detriment to the other.

Several methods have been devised to help the process of choos-

ing one or more solutions among those that are Pareto optimal (see,

e.g., [30, 32]); we discuss some of them and show how they relate

to quantitative versions of the WSP that have been studied in the

literature.

Definition 2.3. Given a SSW (W (T ,U ), TA,K) with functionswP
andwC associating scenarios inW (T ,U ) with the costs of violating

the authorization policy TA and the authorization constraints in K ,
respectively; the Multi-Objective WSP (MO-WSP) amounts to

minimize

η
(wP (η),wC (η) ) subject to η ∈ S

where S ⊆W (T ,U ) is the set of scenarios of interest. �

The MO-WSP is a MOO problem that consists of optimizing—at

the same time—the two functions wP and wC that measure the

costs of violating the authorization policy and the authorization

constraints, respectively, of a SSW while considering the sub-set

S of scenarios in W (T ,U ). The definition of the set S requires

some care as it may be meaningless to solve the MO-WSP for all

scenarios in W (T ,U ) when some of these are executed only as

alternatives. To understand why this is so, consider Example 2.1:

it is not appropriate to solve the MO-WSP with S being the set of

all scenarios in TRW as those containing task t4 are likely to have

higher costs than those not containing it; in fact, t4 is included

in a scenario only when long trip is true, and it is not so when

long trip is false. It would be desirable to solve two distinct MO-

WSPs: one for the set of scenarios in TRW when long trip is true

and another when long trip is false. Then, one can compare the

resulting solutions and, if appropriate, take their maximum. Similar

observations can be found in [14]. We will elaborate on this issue

further in Section 3.

Since the MO-WSP is a MOO problem, to solve it, we can reuse

the cornucopia of techniques available in the literature (see, e.g., [8,

30, 32]). Many of these transform a MOO problem into one or more

optimization problems whose solutions are Pareto optimal (under

reasonable additional assumptions). In the rest of this section, we

discuss the application of such techniques to the MO-WSP.



Weighted sum. This technique translates the MO-WSP into a

standard optimization problem that amounts to minimizing a single

cost function defined as the weighted sum of wP and wC , i.e. a ·

wP (η) + b · wC (η), provided that η ∈ S. The constants a and b,
called weights, model the severity of violating the authorization

policy and constraints, respectively. We assume a > 0 and b > 0 to

guarantee that the solution of the transformed problem belongs to

the set of Pareto optimal solutions of the original problem.

In the security literature, the use of the weighted sum ofwP and

wC to define a quantitative version of the WSP, called the Valued

WSP, has been introduced in [12]. There are two main differences

between the MO-WSP and the Valued WSP. First, the setW (T ,U )

may contain scenarios of various lengths (because of the presence of

conditionals) whereas the class of workflows for which the Valued

WSP is defined gives rise to scenarios with the same length (as it

cannot specify conditional executions). Second, the MO-WSP takes

into consideration control-flow constraints whereas the Valued

WSP does not. A solution to the Valued WSP is an optimal plan (a

function assigning tasks to users), whereas a solution to the MO-

WSP is an optimal execution scenario. In general, there are valid

plans which cannot become valid execution scenarios, as observed

in [11].

The main problem with using the weighted sum technique to

solve the MO-WSP is the a priori selection of non-arbitrary values

for the weights a and b. To make the technique usable in practice,

it would be interesting to study the several methods available in

the literature to guide the weight selection process (see again [30]

for a brief introduction and pointers to the relevant literature) and

adapt them to the solution of the MO-WSP.

Lexicographic. This technique is used when assigning values to

the weights a and b is difficult (or even impossible) but, according

to some qualitative criterion, the order of importance between the

cost functionswP andwC is clear, reflecting the fact that it is prefer-

able to violate either the authorization policy or the authorization

constraints over the other. The first step is to find the solution η∗

to the following optimization problem:

minimize

η
f1(η) subject to η ∈ S

where f1 is the first according to the order of importance between

the two cost functionswP orwC . The second step is to solve another

optimization problem

minimize

η
f2(η) subject to η ∈ S & f2(η) ≤ f2(η

∗)

where f2 is the second according to the order of importance be-

tween the two cost functions wP and wC . The term f2(η
∗) in the

additional constraint f2(η) ≤ f2(η
∗) of the second problem repre-

sents the optimal value for the first problem. The value f2(η
∗) is

not necessarily the same as the independent minimum of f2(η).
To the best of our knowledge, this variant of the MO-WSP has

never been considered before in the literature about quantitative

approaches to the WSP. Because of the difficulties in selecting

weights, we believe this to be an interesting alternative to the

weighted sum technique discussed above. We show our preliminary

experience with solving this variant of the MO-WSP in Section 4.

Bounded cost. The first step of the technique consists of identify-

ing f1 and f2 as the more and less (respectively) important function

between the cost functionswP andwC . Then, it requires to solve

the following optimization problem:

minimize

η
f1(η) subject to η ∈ S & l ≤ f2(η) ≤ u

where l and u are the lower and upper bounds on f2. Usually, l
is omitted unless the intent is to achieve a goal or fall within a

range of values for f2 rather than to determine a minimum. When

omitting l , it is possible to obtain a collection of Pareto optimal

solutions by a systematic variation of the upper bound u.
In the security literature, the use of the bounded cost technique

to define a quantitative version of theWSP, called Bi-ObjectiveWSP

Pareto Optimal (BO-WSP-PO), has been considered in [13]. The

main differences with the MO-WSP are similar to those discussed

above for the Valued WSP.

Boxed. When even establishing an order of importance between

the two cost functions wP and wC is difficult or there is no pref-

erence in violating the authorization policy or the authorization

constraints, it is possible to consider the following two separate

single-objective optimization problems

minimize

η
wC (η) subject to η ∈ S

minimize

η
wP (η) subject to η ∈ S .

Indeed, the solutions of these problems are the best possible ones

for the two cost functions when considered in isolation and provide

bounding box values for the set of Pareto optimal solutions of the

original MOO problem (cf. Definition 2.3).

Similarly to the lexicographic method, also this variant of the

MO-WSP has never been considered before in the literature about

the WSP. Preliminary results about using the boxed technique are

in Section 4.

Pareto front. While the boxed optimization method can provide

decision-makers with a first idea of what optimal solutions for the

MO-WSP look like, an approach returning a set of Pareto optimal

solutions is more desirable. In this way, decision-makers can pick

one of the available solutions a posteriori rather than a priori as

done with the approaches above. In the context of the MO-WSP, a

Pareto front is a maximal set of Pareto optimal scenarios that are not

pairwise weight-equal. A pair of scenarios η and η′ is weight-equal
iffwP (η) = wP (η

′) andwC (η) = wC (η
′).

In the security literature, the use of the Pareto front technique to

define a quantitative version of the WSP, called Bi-Objective WSP

Pareto Front (BO-WSP-PF), has been introduced in [13]. The main

differences with the MO-WSP are similar to those discussed above

for the Valued WSP.

3 ENCODING THE MO-WSP AS AN OMT
PROBLEM

To encode the MO-WSP as an OMT problem, we translate—by

using the approach in [22]—the Petri net semantically associated

to a BPMN workflow—see, e.g., [18]—to a symbolic representation

in (a fragment of) first-order logic. The latter is enriched with the

authorization policies and constraints, also expressed in (a fragment

of) first-order logic—see, e.g., [1]—together with the cost functions,

and used as input to an OMT solver. The model returned by the



Figure 2: The Petri net for the TRW

solver represents an execution of the workflow that is optimal w.r.t.

the input problem.

Background on Petri nets. A tuple (P ,T , F ) is a (Place/Transition)
Petri net [16] for P a set of places, T a set of transitions disjoint

from P , and F ⊆ (P ∪ T ) × (P ∪ T ) the flow relation such that

F ∩ (P × P) = F ∩ (T ×T ) = ∅. The pre-set •x and the post-set x•

of x ∈ (P ∪ T ) are the sets {y | (y,x) ∈ F } and {y | (x ,y) ∈ F },
respectively. A markingm is a mapping from the set P of places to

the natural numbers. A transition t ∈ T is enabled by a marking

m ifm(p) > 0 for each p ∈ •t . If a transition t ∈ T is enabled by a

markingm, its occurrence transformsm intom′
such that

m′(p) :=


m(p) − 1 if p ∈ •t \ t•

m(p) + 1 if p ∈ t• \• t
m(p) otherwise.

We writem
t

−→m′
when t is enabled by markingm withm′

being

the marking obtained by the occurrence of t . A (finite) sequence

t1, . . . , tk of transitions inT is a (finite) occurrence sequence enabled

at markingm if there exist markingsm1, . . . ,mk such thatm
t1
−→

m1

t2
−→ · · ·

tk
−→mk . A markingm′

is reachable fromm when there

exists an occurrence sequence enabled atm whose last marking is

m′
; also written asm

t1, ...,tk
−→ m′

. The Petri net (P ,T , F ) with the

markingm is 1-bounded when each place in P contains at most 1

token in any marking reachable fromm. Here, we consider only

1-bounded Petri nets as it is known that most business processes

have associated such a type of net as their semantics; see, e.g., [18].

Notice that it is possible to express iteration in 1-bounded Petri

nets; see again [18].

Example 3.1. A Petri net can be graphically shown as a bipar-

tite graph where places are drawn as circles and transitions as

squares that are connected by arrows either from places to tran-

sitions or from transitions to places. Figure 2 shows a Petri net

corresponding to the BPMN of the TRW at the left of Figure 1. The

dashed lines labeled by , in the Figure represent authorization con-

straints, whereas the arrows labeled by ‘long’ and ‘¬long’ represent
conditional branches. Notice that the Petri net in Figure 2 has an

“extra” transition, represented by a gray box labeled by ϵ . This is an
automatic transition, that is fired instead of t4 for short trips. �

Symbolic representation. We show how to represent a Petri net

(P ,T , F ) and an initial markingmi with a symbolic transition sys-

tem (S, I , Tr) where S is the set of state variables, I is a symbolic

description ofmi , and Tr is a symbolic description of F . We use

formulae of (a fragment of) first-order logic to represent I and Tr .
Sincewe consider only 1-bounded nets, the set S of state variables

contains a Boolean variable p for each place p ∈ P and a Boolean

variable dt i for each transition ti ∈ T for i = 1, . . . ,K and K > 0 is

the number of transitions inT . The variable p encodes the presence

of a token in place p whereas dt i represents the fact that transition
ti has been executed. The initial state formula I is induced by the

initial markingm0 as follows:

I :=
∧

m0(p)=1

p ∧
∧

m0(p)=0

¬p ∧

K∧
i=1

¬dt i .

Following [22], we derive Tr from F by taking the conjunction of

the following formulae:

K∨
i=1

dt i (1)(j−1∨
i=1

dt i

)
⇒ ¬dt j for 2 ≤ j ≤ K (2)

dt i ⇒
©­«

∧
p∈•t i

p
ª®¬ for 1 ≤ i ≤ K (3)

dt i ⇒
©­«

∧
p∈•t i

¬p′ ∧
∧
p∈t i•

p′
ª®¬ for 1 ≤ i ≤ K (4)

©­«¬
∨

t ∈(•p∪p•)

dt
ª®¬ ⇒ (p′ ⇔ p) for each p ∈ P (5)

where an unprimed (primed) variable in S denotes its content im-

mediately before (after) the execution of the transition. Intuitively,

(1) and (2) require that exactly one transition is executed; (3) that

only enabled tasks are executed; (4) and (5) that the execution of ti
transforms the symbolic representation of a markingm1 into the

symbolic representation of markingm2 wherem1

t i
−→m2.

It is possible to represent conditionals (as it is the case for the

execution of tasks t4 and ϵ in Figure 1) by considering an extra

(disjoint from S) set Π of Boolean variables and then appending an

additional conjunct to the consequent of the implication (3) with

the appropriate Boolean expression. For instance, in case of t4, (3) is
instantiated as dt4 ⇒ p3 ∧ long whereas for ϵ as dϵ ⇒ p3 ∧ ¬long.

Adding authorization policies and constraints. It is easy to include
an authorization policy TA and a set K of authorization constraints

in the symbolic representation introduced above. It is sufficient

to add to S a state variable ht i such that ht i (u) holds whenever
u has executed the transition ti and assume the availability of

a predicate at i such that at i (u) holds whenever (u, ti) ∈ TA for

each ti ∈ T . The intuition is that the at i ’s are defined so as to

represent the authorization policy TA and do not change over time

(there is a rich literature about using logic to represent a variety

of authorization conditions; see, e.g., [1]). The initial formula I



is extended by conjoining ∀u .¬ht i (u) expressing the requirement

that users have executed no tasks. The formula Tr is modified by

conjoining the following two formulae to (1), (2), (3), (4), and (5):

dt i ⇒ ∃u .
(
at i (u) ∧

∧
{t i,t j }∈K ¬ht j (u)∧

h′t i (u) ∧ ∀w .w , u ⇒ h′t i (w) ⇔ ht i (w)

)
for 1 ≤ i ≤ K

(6)

K∧
i=1

(
¬dt i ⇒ ∀w .h′t i (w) ⇔ ht i (w)

)
(7)

where {ti, t j} ∈ K abbreviates “for each (ti, t j) ∈ K and for each

(t j, ti) ∈ K .” Intuitively, (6) says that task ti can be executed when

there exists a user u entitled to do so (cf. at i (u)), no SoD constraints

in which ti is involved are violated (cf.

∧
{t i,t j }∈K ¬ht j (u)), it is

recorded that u has executed ti and no other user has done so (cf.

h′t i (u) ∧ ∀w .w , u ⇒ h′t i (w) ⇔ ht i (w)) and (7) asserts that all

the history variables associated to a task that is not executed are

unchanged.

An authorization constraint is called user-independent if it does

not depend on identities of users. In particular, SoD constraints are

user-independent. We observe that, instead of just SoD constraints,

we could include arbitrary user-independent constraints (see, e.g.,

[27]) because of the expressiveness of (the fragment of) first-order

logic that we use, as explained in [19]. Also, notice that, since the

setU of users is finite, the existential and universal quantifiers in

the formulae above are equivalent to disjunction and conjunction,

respectively, overU . Below, we call extended a Petri net with autho-

rization policies, authorization constraints, or additional Boolean

variables to simplify the representation of control-flow constructs

in BPMN.

Bounded Model Checking (BMC). Before explaining how to en-

code the MO-WSP into an OMT problem, we discuss how BMC [7]

relates to the WSP. To this end, observe that the satisfiability of the

formula

[I (S0)]U ∧ [Tr(S0, S1)]U ∧ · · · ∧ [Tr(Sτ−1, Sτ )]U ∧G(Sτ ) (8)

amounts to establishing the reachability in τ ≥ 1 steps of the goal

formula G from the initial formula I by means of the transition for-

mula Tr . In (8), the expressions I (S0) andG(Sτ ) denote the formulae

obtained from I and G , respectively, by replacing the variables in S
and G with renamed copies with subscripts 0 and τ , respectively;
the expression Tr(St−1, St ) denotes the formula obtained from Tr by
replacing the variables in S and their primed versions with renamed

copies with subscripts t − 1 and t , respectively, for t = 1, . . . ,n;
finally, [X ]U denotes the formula obtained from X by expanding

the universal or existential quantification over the set U of users

as a (finite) conjunction or disjunction (respectively) over U for

X being I or Tr(St−1, St ). The idea to construct formula (8) is to

make “timed” copies of the state variables so that the variables in

St represent the t-th state in a bounded execution of length τ .
When (S, I , Tr) encodes an (extended) 1-bounded Petri net corre-

sponding to a security-sensitive workflow (W (T ,U ), TA,K) and G
characterizes the set of final markings, it is clear that (8) is satisfiable

iff the security-sensitive workflow has an execution of τ ≥ 1 steps,

i.e. a scenario of the form t1(u1), . . . , tτ (uτ ) such thatmi
t1, ...,tτ
−→ mf

formi an initial marking andmf a final marking. By increasing

the value τ , we can explore the whole setW (T ,U ) of execution

scenarios and check if they are both eligible and authorized. To

mechanize this process, we need a Satisfiability Modulo Theories

(SMT) solver, or simply a SAT solver after encoding (8) into a purely

Boolean formula (which is possible because the set U of users is

finite). Furthermore, it is possible to reconstruct an authorized and

eligible scenario of length τ from the assignment returned (if the

case) by the solver.

Symbolic representation of scenarios of interest. It is easy to sym-

bolically represent the set S of scenarios of interest inW (T ,U )

(recall Definition 2.3) by means of a first-order formula. To illus-

trate, consider the TRW in Example 2.1: by simply conjoining the

formula long to the corresponding instance of (8), it is possible

to consider only those scenarios for which the trip requires the

execution of task t4. In general, given the set S of scenarios of

interest, it is possible to build a formula [St ]Π corresponding to

a Boolean assignment to the variables in the set Π representing

the conditionals of the 1-bounded Petri net for each time instant

t = 0, . . . ,τ . It is then sufficient to conjoin the formula

∧τ
t=0[St ]Π

to (8).

Causal nets. We now identify a sub-class of 1-bounded Petri

nets for which it is possible to solve the WSP by checking the

satisfiability of (8) for finitely many values of τ .
A causal net [16] is a Petri net (P ,T , F ) satisfying the following

properties: (i) F is acyclic (i.e. no path with at least two elements

leads from an element to itself), (ii) for each p ∈ P , the cardinality of
both

•p and p• is at most one, (iii) only finitely many places p ∈ P
have an empty pre-set, (iv) for each transition t ∈ T , both •t and
t• are finite and non-empty, and (v) for each element x ∈ P ∪ T ,
only finitely many different paths lead to x . A causal net induces a

partial order ≽ on its elements as follows: x ≽ x ′ iff there exists a

path leading from x to x ′. An element x is maximal (minimal) with
respect to ≽ iff there is no element x ′ such that x ′ ≽ x (x ≽ x ′,
respectively) and x , x ′. A canonical initial marking mi (final
markingmf ) of a causal Petri net assigns to each maximal/minimal

(w.r.t. ≽) place one token and no token to all other places. Notice

that mf enables no transition. Three important properties of a

causal net are that (P1) it is 1-bounded when considered with its

canonical initial marking, (P2) each transition of an occurrence

sequence can eventually occur, and (P3) no transition occurs more

than once in an occurrence sequence [16]. Because of (P1), we can

derive a symbolic representation from a causal net as described

above. (P2) can be lifted to augmented causal nets provided that any

user entitled to execute a task does not delay its execution once this

has become enabled. (P2) and (P3) set an upper bound on the length

of the scenarios of an augmented causal net to the cardinality of the

largest set of transitions that are totally ordered with respect to ≽.

Because of (P1), (P2), and (P3), the following method is a decision

procedure for the WSP. For τ = 0, . . . ,L, if (8) is satisfiable, return
that the WSP is solvable. If τ = L and no formula has been found

satisfiable, return that the WSP is unsolvable.

In the rest of the paper, we consider only causal nets. We notice

that some of the most important control flow patterns in BPMN

for parallel and non-deterministic/conditional executions can be

expressed in this class of nets; see, e.g., [18]. One of the most impor-

tant omissions is iteration (as considered in, e.g., [14]), which we



leave as future work. The advantage of considering causal nets is a

simplified symbolic representation of the set S of the scenarios of

interest. In fact, the conditionals (such as long in TRW) can be exe-

cuted only once and we can drop the subscript t from the formula

[St ]Π corresponding to their Boolean assignment (see paragraph

‘Symbolic representation of scenarios of interest’ above). It is thus

sufficient to conjoin the formula [S]Π to (8).

3.1 From the MO-WSP to the OMT Problem
OptimizationModulo Theories (OMT) is an extension of SMTwhich

aims to solve the problem of finding a model for an input formula

φ which is optimal with respect to one or more objective functions.

An important sub-case of OMT is the (weighted partial) Min-SMT
problem that can be stated as follows. A clause is a disjunction

of literals, i.e. atoms or their negations, over some theory. A soft

clause is a pair consisting of a clause with a weight (a non-negative

number). A hard clause is a pair consisting of a clause with an

infinite weight. Given a formula of the form φh ∧ φ1s ∧ · · · ∧ φ
q
s ,

where φh is a conjunction of hard clauses and φks is a conjunction

of soft clauses for k = 1, . . . ,q, the (weighted partial) Min-SMT
problem amounts to finding a model of φh that minimizes the tuple

(w1

s , . . . ,w
q
s ) of weights obtained by taking the sum of the weights

of the satisfied soft clauses in φ1s , . . . ,φ
q
s , respectively.

We now explain how to reduce the MO-WSP to a Min-SMT prob-

lem. The idea is to consider the formula (8) ∧ [S]Π , take q = 2 sets

φ1s and φ
2

s of soft clauses representing the constraints imposed by

the authorization policy and the authorization constraints, respec-

tively, and associate to each clause in these sets a weight derived

from the functionswP andwC . The details of the reduction can be

summarized in the following six steps.

(1) From an instance of the MO-WSP (c.f. Definition 2.3), build

the formula φ as the conjunction of (8) and [S]Π .

(2) Replace all the atoms of the forms at i (u) and ht j (u), for
some u ∈ U , that occur in φ as instances of the atoms in

(6) with fresh Boolean variables ba and bh ; let φ
′
be the

resulting formula and Abs be the set of all pairs (ba ,at i (u))
and (bh ,ht j (u)).

(3) Transform φ ′ into an equisatisfiable conjunction φh of

clauses by using well-known logical transformations (see,

e.g., [23]); the size of φh can be linear in the size of φ ′.
(4) Take φ1s to be a conjunction of clauses of the form ¬ba ∨

at i (u) for each (ba ,at i (u)) in Abs and φ2s to be a conjunction
of clauses of the form ¬bh ∨ ht j (u) for each (bh ,ht j (u)) in
Abs.

(5) Assign weights wai to each ba and whj to each bh , such

thatw1

s =
∑
wai andw

2

s =
∑
whj encode the cost functions

wP (η) andwC (η), respectively. Notice that the cost functions
are defined on execution scenarios, whereas we need “local”

weights wai and whj . As a reasonable simplification, we

assume that wP (η) and wC (η) are linear combinations of

terms that depend only on a task t being executed, the useru
executing t , and the execution history of u and another task

t ′1. Then, we canmap each term in a cost function to aweight

1
Defining cost functions on scenarios is more general, as it allows us to have different

costs for specific user-task pairs or costs that depend on the order of execution of the

tasks. It is possible to define complex cost functions as local weights by encoding the

wai orwhj or ask the user directly for the weights. Recall the

cost functions in Example 2.2: in this case, wai = whj = 1

for each ba and bh .
(6) Find a model of φh∧φ

1

s ∧φ
2

s that minimizes the pair (w1

s ,w
2

s ).

Themodel can be used to compute one ormore scenarios that

are solutions to the MO-WSP (how to do this is illustrated

in an example below).

Observe that formula φ ′ computed at step 2 is an over-

approximation of (8) as it abstracts away from the constraints im-

posed by the authorization policies and authorization constraints

(that are replaced by fresh Boolean variables), thus guaranteeing

only the control-flow constraints of the SSW. Also notice that, since

the fresh Boolean variables ba ’s and bh ’s are constrained by the

soft clauses in φ1s and φ
2

s , respectively, the solver is free to choose

their truth value to minimize the pair of weights (w1

s ,w
2

s ) according

to one of the criteria discussed in Section 2.1.

3.2 Parallel encoding
The transition formula Tr presented above uses an interleaving

semantics for the execution of tasks in a workflow, i.e. it assumes

that only one task is executed at each step τ (parallel tasks can be

executed in any order).

We now explore an optimized encoding of Tr based on a ∀-step
semantics, as defined in [22], which exploits the parallelism in

workflow specifications to model the execution of (possibly) several

tasks in one step, thus compressing the number of steps in Tr . It
also uses properties of causal nets to encode in each step only those

tasks that may actually be executed. This encoding is slightly more

complex to understand and requires a pre-processing phase, but it

is also faster for an OMT solver (see Section 4.3).

To formalize the encoding, we need to introduce some prelimi-

nary notions. An anti-chain is a sub-set of the elements in a partial

order ≽ in which no two distinct element are comparable, i.e. nei-

ther t ≽ t ′ nor t ′ ≽ t for every pair of elements in the sub-set. A

cut of a causal net is a maximal (w.r.t. inclusion) set of elements in

P ∪ T that are pairwise not ordered by ≽ (where ≽ is the partial

order induced by the net).

Property 1. Let N be the causal net associated to a security-
sensitive workflow (W (T ,U ), TA,K). Then, if C is a cut of N , then
C ∩T is a maximal anti-chain of ≽.

To encode the fact that more than one task can be executed in

a given step of Tr , we can reuse formulae (1) and (3–5). We only

need to change formula (2), the one that says that only one task is

executed in each step. The revised version of (2) is(j−1∨
i=1

dti

)
⇒

∧
p∈ti •∩•tj

¬dtj for 2 ≤ j ≤ K (9)

which means that possibly all tasks can be executed at each step.

This formula delegates to the OMT solver the job of finding a

satisfying assignment that respects the control-flow constraints of

the workflow.

clauses ba and bh using, e.g., if-then-else conditions, but that increases the complexity

both for humans to express and for solvers to find optimal models.



We obtain the sets of tasks that can be executed in parallel at

each step of Tr in (8) by computing the lattice of maximal anti-

chains (see, e.g., [24]) and traversing it breadth-first. We construct

the BMC encoding by starting from the bottom of the lattice and,

in each level (which corresponds to a step in Tr), we encode only
the tasks in the anti-chain of that level in (9). If there is more than

one anti-chain in a level, this is encoded as an exclusive disjunction.

The number of steps in Tr becomes equal to the number of maximal

anti-chains, instead of equal to the number of tasks in the workflow.

After discharging the BMC formula to an OMT solver, the result-

ing model is a compact representation of several possible interleav-

ing executions, which can be linearized. We illustrate how this is

done by an example.

Example 3.2. We consider TRW and assume that long is true,

i.e. we want to execute t4 (for the sake of simplicity, we omit the

conjunct long in the formulae below). In this case, we have 3 anti-

chains: {t1}, {t2, t3, t4}, and {t5}, each representing a set of tasks

that can be executed in parallel. Using the original interleaving

encoding, we would have modeled the TRW with 5 steps, one for

each task (considering that either t4 or ϵ can be executed). With the

parallel encoding, we model it using 3 steps, one for each anti-chain.

Step 0 is obtained by applying (1), (9), (3), (4), and (5) only to task

t1:

d0t1 ∧
©­«

5∧
j=2

d0t1 ⇒ ¬d0t j
ª®¬ ∧

(
d0t1 ⇒ p00

)
∧

(
d0t1 ⇒ ¬p01 ∧ p11 ∧ p21 ∧ p31

)
∧

©­«¬
5∨
j=2

d0t j ⇒
7∧
j=4

pj1 = pj0
ª®¬ ,

where the first line indicates that only t1 can be executed and it must

be enabled, whereas the second line specifies both the variables that

are updated and those that remain unchanged. Step 2 is obtained

by applying the same formulae only to t5:

d2t5 ∧
©­«

4∧
j=1

d2t5 ⇒ ¬d2t j
ª®¬ ∧

(
d2t5 ⇒ p42 ∧ p52 ∧ p62

)
∧

(
d2t5 ⇒ ¬p43 ∧ ¬p53 ∧ ¬p63 ∧ p73

)
∧

©­«¬
4∨
j=1

d2t j ⇒
3∧
j=0

pj3 = pj2
ª®¬

and the meaning of the formula is similar to the previous one

(replacing t1 by t5). Step 1 encompasses t2, t3, t4, and ϵ and is

encoded as follows:©­«
4∨
j=2

d1t j ∨ d1ϵ
ª®¬ ∧ ©­«

4∨
j=2

d1t j ∨ d1ϵ ⇒ ¬d1t1 ∧ ¬d1t5
ª®¬ ∧©­­­«

d1t2 ⇒ p11∧
d1t3 ⇒ p21∧

d1t4 ⇒ long ∧ p31∧
d1ϵ ⇒ ¬long ∧ p31

ª®®®¬ ∧
©­­­«
d1t2 ⇒ ¬p12 ∧ p42∧
d1t3 ⇒ ¬p22 ∧ p52∧
d1t4 ⇒ ¬p32 ∧ p62∧
d1ϵ ⇒ ¬p32 ∧ p62

ª®®®¬ ∧(
¬(d1t1 ∨ d1t5) ⇒ p03 = p02 ∧ p73 = p72

)
.

A model for the BMC formula constructed as above assigns True to

the following variables (and False to all the others):

d0t1,d
1

t2,d
1

t3,d
1

t4,d
2

t5,p0
0,p11,p21,p31,p42,p52,p62,

Figure 3: Architecture of the implementation

h0t1(b),h
1

t2(a),h
1

t3(c),h
1

t4(a),h
2

t5(b), long

which represents the following scenarios:

η1 = t1(b), t2(a), t3(c), t4(a), t5(b);

η2 = t1(b), t2(a), t4(a), t3(c), t5(b);

η3 = t1(b), t3(c), t2(a), t4(a), t5(b);

η4 = t1(b), t3(c), t4(a), t2(a), t5(b);

η5 = t1(b), t4(a), t2(a), t3(c), t5(b);

η6 = t1(b), t4(a), t3(c), t2(a), t5(b).

�

4 EVALUATION
We implemented a prototype and experimented with two sets of

benchmarks: real-world workflows and synthetic, randomly gen-

erated, ones. The benchmarks contain only causal nets and sets of

scenarios of interest that refer to parallel executions of tasks (e.g.,

those either containing t4 or not in TRW).

4.1 Implementation
Figure 3 shows the architecture of our implementation. The user

inputs a BPMN model of the workflow (including authorization con-

straints), an authorization policy, and an Encoding. The Encoding
includes the option of semantics to use for the transition system

(interleaving or parallel), the costs associated to violating the policy

and constraints, and the optimization mode. These artifacts are

given to an Encoder, which translates the model and options to a set

of formulae that can be fed to anOMT solver. The solver outputs one
or more optimal models, which are passed to a Decoder module to

transform them into actual execution scenarios that are presented

to the user.

We used Python, PySMT [25], and SageMath [17] to implement

the Encoder and Decoder and interface with the OMT solvers. We

support the solvers OptiMathSAT [32] and Z3 [8]. Both natively

support Boxed, Lexicographic, and Pareto optimization. Weighted

sum and Bounded cost optimization can be easily encoded, but we

skip this in the experiments for the sake of space.



4.2 Real-world workflows
We applied our approach to two workflows inspired by real-world

examples
2
(ITIL and ISO, shown in Figure 4), besides the TRW

presented before. These examples include all the basic workflow

control-flow patterns [33] (sequential, parallel, and exclusive ex-

ecutions). Each workflow has 10 users authorized for each task,

except for the last task, which has no authorized users, so that the

workflow becomes unsatisfiable.

Table 1 shows the results.
3
For each workflow instance, we used

12 configurations, obtained from the combinations of: 2 encod-

ings (‘Interleaving’ and ‘Parallel’); 2 OMT solvers (‘OptiMathSat’

and ‘Z3’); and 3 modes of optimization (‘Lexic.’ for Lexicographic,

‘Boxed’, and ‘Pareto’). Each configuration was executed 10 times

and we report the median execution time (in seconds).

All solutions are found in less than 1 second (most in less than

0.5 seconds). It is easy to see that the parallel encoding has a su-

perior performance in every case (far superior, in many cases). It

is also clear that Pareto is the slowest optimization mode, while

Boxed and Lexicographic have almost the same performance, and

that Z3 is faster than OptiMathSAT when both are using the same

optimization mode, except for two cases (ITIL and ISO with the

interleaving encoding and Boxed optimization).

These results show that solving the MO-WSP with optimization

modulo theories is feasible for average instances found in real-world

use cases. To further test the effects of the parallel encoding and

the scalability of the techniques in larger instances, we consider

synthetic benchmarks.

4.3 Synthetic benchmarks
We adapted the random workflow generator used in [6] to generate

workflows with TA’s and SoD constraints that are not satisfiable.

The tool generates workflows with a given number of tasks n, 10n
users, TA’s with up to 5 tasks with no authorized users, and at least

1 unsatisfiable SoD constraint. There are two more parameters: d
is the number of user-task pairs in TA out of the possible number

(e.g., with 100 users and 10 tasks, there could be 1000 user-task

pairs; if d = 10%, the tool generates 100 of those); e is similar and

specifies the (relative) number of authorization constraints out of

the number of tasks. The generated workflows have sequential and

2
http://www.signavio.com/reference-models/

3
All the experiments in this paper were performed on a laptop with a quad-core 2.6GHz

Core i7 processor and 16GB of RAM running Ubuntu 16.04.

Table 1: Results for real-world workflows (in seconds)

OptiMathSAT Z3

Encoding Lexic. Boxed Pareto Lexic. Boxed Pareto

TRW

Interleaving 0.178 0.302 0.192 0.045 0.046 0.155

Parallel 0.034 0.032 0.035 0.019 0.019 0.024

ITIL

Interleaving 0.498 0.280 0.615 0.034 0.033 0.255

Parallel 0.051 0.056 0.061 0.021 0.021 0.031

ISO

Interleaving 0.502 0.301 0.731 0.045 0.045 0.255

Parallel 0.049 0.048 0.051 0.025 0.025 0.037

parallel tasks (for every task in a workflow, there is a 15% probability

to branch).

Encodings. To confirm that the parallel encoding is superior to

the interleaving encoding even as the size of the input workflow

grows, we ran an experiment where we generated workflows with

10, 13, 16, 19 tasks (100, 130, 160, 190 users). We tested with the same

12 configurations as before (2 encodings, 2 solvers, 3 optimization

modes) and a fixed d, e = (10%, 10%). Again, each configuration

was executed 10 times and we report the median execution time

(in seconds).

Table 2 shows the results. The parallel encoding is always supe-

rior and the gains obtained with it become more substantial as the

workflow size grows in most configurations. The time to compute

the lattice of maximal anti-chains used for the parallel encoding is

negligible and not reported separately (it is already included in the

time reported for the execution with the parallel encoding).

For workflows with 20 or more tasks, we started observing time-

outs in the execution of the solvers when using the interleaving

encoding (we set the timeout to 1 hour). To show the scalability of

the technique beyond 20 tasks, we used only the parallel encoding

and expanded our tests to include different d, e configurations.

Scalability. We generated workflows with 10 to 30

tasks (100 to 300 users) and the d, e configurations

{(10%, 10%), (10%, 30%), (20%, 10%), (20%, 30%)}, as done in [13]. For

each configuration, we generated 10 random workflows and solved

the MO-WSP using the parallel encoding, both OMT solvers and

the three optimization modes (Lexicographic, Boxed, and Pareto).

Figure 5 shows the results. Each graph shows the results of one

OMT solver in one optimization mode, where the x axes show

the number of tasks, the y axes show the median time to solve an

instance, and each line represents a (d, e) configuration. Notice that
the scales are different for each graph.

There is an (expected) exponential growth in the time to solve

the MO-WSP, nevertheless, even for workflows of up to 30 tasks and

300 users—large configurations for realistic use cases—the solution

is found in under 30 seconds. The time to compute a lattice of

maximal anti-chains and obtain the scenarios from the generated

models is negligible (less than 100 ms) and thus not reported. It

Table 2: Results for synthetic workflows (in seconds)

OptiMathSAT Z3

Encoding Lexic. Boxed Pareto Lexic. Boxed Pareto

n = 10 tasks

Interleaving 1.219 1.325 1.209 0.429 0.083 0.708

Parallel 0.117 0.125 0.123 0.030 0.024 0.061

n = 13 tasks

Interleaving 5.353 6.335 5.948 3.330 32.093 3.771

Parallel 0.270 0.224 0.234 0.054 0.045 0.078

n = 16 tasks

Interleaving 19.058 18.021 17.721 5.243 157.120 28.551

Parallel 1.053 0.699 0.516 0.158 0.110 0.291

n = 19 tasks

Interleaving 71.607 50.214 128.333 5.496 216.106 50.075

Parallel 2.062 0.906 1.127 0.298 0.140 1.224

http://www.signavio.com/reference-models/


Figure 4: ITIL process (top) and ISO process (bottom) in extended BPMN.

is also clear that Z3 is faster than OptiMathSAT in almost every

instance.

4.4 Discussion
In many cases, off-the-shelf solvers provide greater flexibility at

the cost of decreased performance when compared to ad hoc al-

gorithmic solutions, since the latter can be optimized for specific

applications. However, in [27] it is shown that the difference in

performance for moderate-size WSP instances can be practically

insignificant if appropriate modelling of constraints is used. In our

experiments, off-the-shelf solvers show good performance, however

more experiments would be needed to confirm that our solution can

outperform bespoke algorithms for the kinds of WSPs considered.

The algorithmic solution that is closest to our work is that of [13].

However, it is hard to directly compare our experiments with those

reported in [13] because the settings are different. First, they con-

sider a wide family of user-independent constraints—i.e. those con-

straints whose satisfaction does not depend on the identity of the

users—whereas we only experiment with SoD constraints. Second,

the platforms on which the experiments were run are different, e.g.,

they do not exploit concurrency, whereas the solvers that we use

do exploit this feature. Nevertheless, to give an idea of the orders

of magnitude, while our average worst case execution time for

workflows of 30 tasks was under 30 seconds, they report times of

10
3
seconds in the worst case. On the other hand, their best case

scenarios (for workflows of 10 tasks) run in 10
−4

seconds, whereas

our best performance for a similar configuration was 10
−2

seconds.

A systematic comparison using the available code and benchmarks

of [13] is planned as future work.

5 RELATEDWORK
The seminal work of Bertino et al. [5] described the specification and

enforcement of authorization constraints in workflow management

systems. Wang and Li [34] showed that the WSP is NP-complete

even with simple constraints and reduced the problem to SAT.

See [20, 26] for a survey on workflow satisfiability approaches.

Bertolissi et al. [6] presented a solution to the run-time WSP that

relies on pre-computing all eligible execution scenarios of a security-

sensitive workflow as a symbolic reachability graph. This graph is

refined in [21] to find execution scenarios that satisfy properties

defined by the user. It is not possible to reuse the solutions in [6, 21]

to solve the MO-WSP because the pre-computed graphs do not

consider constraint violations.

Basin et al. [4] studied how to optimally modify an authoriza-

tion policy to render a workflow instance satisfiable, by associating

a cost to each possible change to the policy. On the other hand,

Crampton et al. [12, 13] first studied how to find minimal violating

assignments of users to tasks, without changing the policy. They

first defined the Valued WSP [12] and later the BO-WSP [13], then

solved both using a bespoke algorithm and showed that their solu-

tion is superior to a mixed integer programming approach in terms

of performance. The authors also showed how to solve two related

problems by encoding them as cost functions: the quantitative re-

siliency problem [29], which amounts to assigning a probability to

the successful termination of a workflow even in the absence of

some users; and the Cardinality-constrained Minimum User Prob-

lem (CMUP) [31], which consists in finding the minimum number

of users required to satisfy a workflow instance. The main differ-

ence between our work and Crampton et al. [12, 13] is that we

consider an ordered execution of workflows, whereas they take as

solution a valid plan, which is an unordered assignment of tasks to

users. They also considered user-independent constraints in their

experiments, which we did not implement, but, as already observed

in Section 3, can be expressed in the fragment of first-order logic

that we use.

Crampton et al. [14] extended their algorithmic solution to sup-

port conditional workflows with release points—which specify that

a constraint may be active only for some scenarios—by splitting a

workflow instance into many deterministic ones. We believe that

release points can also be incorporated in our solution by using an

approach similar to [4]; we leave this to future work. A challenge

is to adapt the parallel encoding of Section 3.2 to this generalized

problem so to have better scalability. For this, we believe that the

techniques in [22] can be useful.

6 CONCLUSION
We have motivated, defined, and solved the MO-WSP. This work

is the first to consider quantitative solutions to the WSP with an
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ordered execution of tasks, i.e., without abstracting the control-flow

constraints, and control-flow patterns such as alternative execution.

Our solution, based on the use of off-the-shelf OMT solvers is

flexible enough to handle several version of the problem by simply

alternating between optimization modes.

The solution was also implemented and evaluated on real and

synthetic instances of the problem, showing good performance due

to the use of an ingenious encoding of the problem that exploits

the parallel executions of tasks in the workflow.

6.1 Future work
We plan to investigate a generalization of the MO-WSP that con-

siders all scenarios at the same time, not restricting to the set of

scenarios of interest as done in Definition 2.3. The idea is to return

either all optimal solutions associated to alternatives (e.g., the set

of optimal solutions for the scenarios including t4 and another set

for those not including t4 in TRW) or the maximum of the optimal

solutions. We intend to generalize the approach in Section 3 to solve

also this problem as follows. First, use the encoding in Section 3.1

by taking (8) only as the formula φ (i.e. disregarding the formula

[S]Π representing the set S of scenarios of interest) and solve the

resulting optimization problem. Take the assignment of the Boolean

variables in Π and negate them; let δ be the resulting formula. Then,

take the conjunction of (8) and δ as φ and solve the new (refined)

OMT problem: the solver will search for optimal solutions that refer

to an assignment of the variables in Π that is different from the

previous one. We repeat the process until no more assignments

to the variables in Π are found. The main challenge to make the

approach practical is to reduce the number of OMT problems to

solve in the worst case, which is equal to the number 2
|Π |

of alter-

native execution scenarios induced by the Boolean variables in Π.
To this end, we plan to develop heuristics to synthesize formulae

expressing the fact that sequences of tasks contained in alternative

scenarios are equivalent with respect to the costs considered. Such

formulae will be conjoined to (8) to hopefully avoid the complete

enumeration of the exponential number of alternative scenarios.

As already mentioned throughout the paper, we intend to study

how to support iterations and release points. Another line of future

work is to consider a version of the MO-WSP where deviations

from the modeled control-flow are allowed. In practice, control-

flow deviations are common in, e.g., healthcare systems [2] and

finding executions that are optimal w.r.t. control-flow, authorization

policies, and authorization constraints may further expand the

applicability of our technique.

Finally, we intend to integrate our work into a workflow man-

agement system, so that users can get solutions with the push

of a button in an integrated environment (as done for run-time

monitoring in [9]).
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