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ABSTRACT
Modularity is an important concept in the design and enact-
ment of workflows. However, supporting the specification and
enforcement of authorization in this setting is not straightfor-
ward. In this paper, we introduce a notion of component and
a combination mechanism for security-sensitive workflows.
These are business processes in which execution constraints
on the tasks are complemented with authorization constraints
(e.g., Separation of Duty) and authorization policies (speci-
fying which users can execute which tasks). We show how
authorization constraints can also be imposed across com-
ponents and demonstrate the usefulness of our notion of
component by showing (i) the scalability of a technique
for the synthesis of run-time monitors for security-sensitive
workflows; and (ii) the design of a plug-in for the reuse of
workflows and related run-time monitors inside an editor for
security-sensitive workflows.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection

Keywords
Business Process, Modularity, Workflow Satisfiability

1. INTRODUCTION
Business process designers constantly strive to adapt to

rapidly evolving markets under continuous pressure of regu-
latory and technological changes. In this respect, a frequent
problem faced by companies is the lack of automation when
trying to incorporate new requirements into existing pro-
cesses. A traditional approach to business process modeling
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frequently results in large models that are difficult to change
and maintain. This makes it critical that business process
models be modular and flexible, not only for increased mod-
eling agility at design-time but also for greater robustness
and flexibility of enacting at run-time (see, e.g., [18] for a
discussion about this and related problems).

The situation is further complicated when considering the
class of security-sensitive workflows [2], i.e. when tasks in
processes are executed under the responsibility of humans
or software agents acting on their behalf. This means that,
besides the usual execution constraints (specified by causal
relations among tasks), there are authorization policies and
constraints, i.e. the conditions under which users can exe-
cute tasks. Authorization policies are usually specified by
using some variant of the Role Based Access Control (RBAC)
model (see, e.g., [30]), while authorization constraints restrict
which users can execute some set of tasks in a given work-
flow instance; an example is the Separation of Duty (SoD)
constraint requiring two tasks to be executed by distinct
users.

Since authorization policies and constraints may prevent
the successful termination of the workflow, it is crucial to
be able to establish if all tasks in the workflow can be exe-
cuted satisfying the authorization policy without violating
any authorization constraint, which is known as the Work-
flow Satisfiability Problem (WSP) [7]. In case of large and
complex workflow specifications with expressive access con-
trol policies, detecting user assignments that may prevent
the termination of a workflow becomes a computationally
heavy task; the WSP is known to be NP-hard already in
presence of one SoD constraint [31]. At run-time, the sit-
uation poses even more constraints on performance since
at each new user request to execute a task, it is necessary
to solve a new instance of the WSP by taking into account
the history of the execution so far, i.e. which users have
executed which tasks up to that instant (see, e.g., [3, 4]).
Many of the available solutions to the WSP (such as [31,
3, 10, 17, 9]) do not provide practical tools capable of en-
abling designers of business processes to compose satisfiable
workflows with authorization requirements. This ultimately
prevents the development of efficient enactment mechanisms
for security-sensitive workflows.

The modular design of business processes has been advo-
cated for a long time in academia because of its support to
reuse at design-time and scalability at run-time [21, 22]. In in-
dustry, it is more and more common to find solutions allowing
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the reuse of (parts of) workflows to realize complex business
processes. For instance, SAP Operational Process Intelli-
gence1 supports the creation of end-to-end business processes
spanning multiple workflows. Such (template) workflows can
be created once and stored to be then operated in differ-
ent contexts. As an example, a Purchase Order workflow
with tasks Create Purchase Order and Create Invoice would
be part of any end-to-end business process selling goods,
whereas a Warehouse Management workflow composed of
tasks Locate Product and Send Product would be included
only in cases where physical goods are involved.

Although techniques for modular specification and enact-
ment of workflows and their impact have been extensively
studied in the literature (see, e.g., [21, 22, 15]), the same
is not true for security-sensitive workflows. In this special
class of workflows, not only the control-flow spans several
modules, but even authorization constraints may be defined
across different components. Given the difficulties in speci-
fying and enforcing execution and authorization constraints
in this context, it is not surprising that vulnerabilities can
be exploited by malicious users. For example, recently, the
incorrect handling of authorization constraints between a
Purchase Order and a Warehouse Management workflow
allowed an Amazon employee to pay for cheap products and
deliver expensive electronics to himself2. This kind of fraud
could be avoided by specifying at design-time and enforcing
at run-time a SoD constraint between tasks Create Purchase
Order and Send Product.

To summarize, the modular specification and enactment
of security-sensitive workflows is complicated by the lack of
adequate answers to the following questions:

(i) how to specify authorization constraints that span mul-
tiple modules (inter-module constraints)?

(ii) how to enforce such constraints?
(iii) how to scale the enforcement mechanism and handle

large workflows?
(iv) how to reuse already specified modules across processes?

In this paper, we introduce an approach capable of answering
the questions above by making the following contributions:
• the definition of security-sensitive workflow components

equipped with interfaces that allow to glue components
together and define constraints between them (Sec-
tion 3), to answer question (i);
• an automated technique, extending previous work [4],

to synthesize run-time monitors from workflow compo-
nents ensuring that all tasks can be executed without
violating the policy or the constraints (Section 3.2), to
answer question (ii);
• an experimental evaluation of our approach that clearly

shows its viability and scalability (Section 4.1), to an-
swer question (iii); and
• a description of a prototype implementing the reuse of

workflow modules and monitors that can be integrated
with industrial BPM systems (Section 4.2), to answer
question (iv).

Section 2 presents the required background and an overview
of the technique, while Section 5 discusses related work, a
promising future direction of research, and concludes the
paper.

1https://help.sap.com/hana-opint
2https://goo.gl/1bySZH

Figure 1: TRW in extended BPM notation

2. OVERVIEW
Our goal is to support the modular design and enact-

ment of security-sensitive workflows and the synthesis of
run-time monitors solving the WSP for these workflows. To
introduce our approach, in this section we first recall the
(non-modular) workflow specification and monitor synthesis
technique from [4] (Section 2.1), and then we show the main
intuitions and examples on how to extend the technique to
support modular workflows (Section 2.2).

2.1 Workflow Specification and Monitor Syn-
thesis

We illustrate our technique [4] for synthesizing a run-time
monitor to solve the WSP by means of a simple example.

Example 2.1. The workflow shown in Figure 1 represents
the Trip Request Workflow (TRW), whose goal is requesting
trips for employees in an organization. It is composed of
five tasks: Request (t1), Car rental (t2), Hotel booking
(t3), Flight reservation (t4), and Validation (t5). Five SoD
constraints must be enforced, i.e. the tasks in the pairs (t1, t2),
(t1, t4), (t2, t3), (t2, t5), and (t3, t5) must be executed by
distinct users in any sequence of task executions of the TRW.

The workflow is specified in extended BPM Notation
(BPMN) [20]. It contains two circles, the one on the left
represents the start event (triggering the execution of the
workflow), whereas that on the right the end event (termi-
nating the execution of the workflow), tasks are depicted
by labeled boxes, the constraints on the execution of tasks
are shown as solid arrows (for sequence flows) and diamonds
labeled by + (for parallel flows), the fact that a task must
be executed under the responsibility of a user is indicated by
the man icon inside a box, and SoD constraints as dashed
lines labeled by 6=.

A simple situation in which the TRW can be de-
ployed is a tiny organization with a set U = {a, b, c} of
three users and the following authorization policy TA =
{(a, t1), (b, t1), (a, t2), (b, t2), (c, t2), (a, t3), (b, t3), (c, t3), (a,
t4), (a, t5), (b, t5), (c, t5)}, where (u, t) ∈ TA means that
user u is entitled to execute task t. The organization
would then like to know if there is a concrete execution
that allows the process to terminate. Indeed, this is possi-
ble as shown by the following sequence of task-user pairs:
η = t1(b), t3(c), t4(a), t2(a), t5(b) where t(u) means that user
u has executed task t and the position in the sequence corre-
sponds to the order in which the tasks have been executed
(i.e. t1 has been executed first, t5 last, t3 after t1 but before
t4, t2, and t5, etc). It is easy to check that the tasks in η are
executed so that the ordering constraints on task execution
are satisfied, each user u in each pair t(u) of η is authorized
to execute t since (u, t) ∈ TA, and each SoD constraint is
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id enabled action
CF Auth CF Auth

t1(u) p0∧¬dt1 at1(u) p0, p1, p2, p3, dt1
:= F, T, T, T, T

ht1(u)
:= T

t2(u) p1∧¬dt2 at2(u) ∧ ¬ ht3(u)
∧ ¬ ht1(u)

p1, p4, dt2
:= F, T, T

ht2(u)
:= T

t3(u) p2∧¬dt3 at3(u) ∧ ¬ht2(u) p2, p5, dt3
:= F, T, T

ht3(u)
:= T

t4(u) p3∧¬dt4 at4(u) ∧ ¬ht1(u) p3, p6, dt4
:= F, T, T

ht4(u)
:= T

t5(u) p4∧p5∧
p6∧¬dt5

at5(u) ∧ ¬ ht3(u)
∧ ¬ ht2(u)

p4, p5, p6, p7, dt5
:= F, F, F, T, T

ht5(u)
:= T

Figure 2: TRW as an extended Petri net (top) and
as a transition system (bottom)

satisfied (e.g., tasks t1 and t2 are executed by the distinct
users b and a, respectively).

Workflows can be represented at different levels of abstrac-
tion: in a modeling language like BPMN, which is suited for
process designers but abstracts details of the semantics of
the systems; as transition systems, which are amenable to
formal analysis, but require descriptions much more detailed
than what is usually provided by designers; and as Petri nets,
which are often not familiar to designers, but have a formal
semantics and are more intuitive than transition systems.
The translation between these levels of abstraction can be
done automatically (see, e.g., [28]), i.e. workflow designers
can work at the BPMN level (e.g., the TRW in Figure 1) and
a procedure, that is transparent to end-users, can translate
them to Petri nets (e.g., top of Figure 2 for the Petri net
corresponding to the BPMN in Figure 1) and then to transi-
tion systems (bottom of Figure 2 for the transition system
corresponding to the Petri net at the top of the same figure),
which are amenable to formal analysis.

We now briefly recall the technique in [4] to synthesize run-
time monitors solving the WSP (i.e. enforcement mechanisms
capable of finding a solution to the WSP). It takes as input
the specification of a security-sensitive workflow (e.g., the
BPMN in Figure 1 for the TRW) with the specification of
an authorization policy TA and consists of two steps.
Off-line step.

Let S = (V,Tr) be the (symbolic) transition system [26]
derived from a security-sensitive workflow composed of a
finite set T of tasks, a finite set U of users, and a finite set
C of authorization constraints where V is the (finite) set of
state variables and Tr is the (finite) set of transitions. The
authorization policy TA is not taken into consideration in
this step as we are able to synthesize a monitor for the WSP
which can accommodate any such policy.

Example 2.2. To illustrate, let us consider the transition
system at the bottom of Figure 2. The set V of state vari-
ables contains the (Boolean) control-flow variables pi and dti,
where pi represents the existence of a token in the place pi of

the Petri net at the top of the same figure and dti represents
the fact that transition ti of the Petri net at the top of the
same figure has been executed. Additionally, V contains the
authorization variables ati and hti that are (Boolean) arrays
such that ati(u) means that user u is entitled to execute task
ti and hti(u) means that user u has executed task ti.

The transitions in Tr are listed in the table at the bottom
of Figure 2 and are composed of three parts: an id(entifier),
an enabling condition, and an effect. To illustrate, consider
the second line of the table: the id indicates that user u
executes task t2, the enabling condition is composed of two
parts CF , which stands for control-flow, and Auth, which
stands for authorization. The enabling condition CF is the
conjunction of predicates p1 and ¬dt2 indicating that, for
this event to be enabled, there must be a token in place p1
of the Petri net (at the top of the same figure) and task t2
has not been executed yet. The enabling condition Auth
is the conjunction of predicates at2(u), indicating that the
user requesting to execute this task must be authorized
to do so by the authorization policy (i.e. (u, t) ∈ TA),
¬ht3(u), indicating that the user requesting to execute this
task should not have executed task t3 (notice that t2 and
t3 can be executed in parallel, due to the gateway), and
¬ht1(u), indicating that the user requesting to execute this
task should not have executed task t1 (notice that the SoD
constraint between t2 and t5 is not present in t2(u) because
t5 is always executed after t2). The effect is also divided in
a CF and an Auth part. The effect of executing t2 at the
control flow level (CF ) is to remove a token from place p1
and put a token in place p4 (formally, this is done by setting
p1 to False and p4 to T rue, as well as recording the execution
of t2 by setting dt2 to T rue). The effect of executing t2 at the
authorization level (Auth) is to update the history function
ht2 to record the fact that t2 has been executed by user u
(formally, ht2(u) := T ).

The transition system S is used to compute a (symbolic)
reachability graph RG , i.e. a directed graph whose edges are
labeled by task-user pairs in which users are symbolically
represented by variables (called user variables) and whose
nodes are labeled by a symbolic representation (namely, a
formula of first-order logic) of the set of states from which
it is possible to reach a state in which the workflow suc-
cessfully terminates (for the TRW, this is the set of states
in which all five tasks have been executed). A sequence
ηs = t1(υj1), ..., tn(υjn) of task-user pairs is a symbolic ex-
ecution where υji is a user variable with 1 ≤ ji ≤ n and
i = 1, ..., n. A well-formed path in RG is a path starting with
a node without an incoming edge and ending with a node
without an outgoing edge. The crucial property of RG is
that the symbolic execution ηs = t1(υj1), ..., tn(υjn) collected
while traversing one of its well-formed paths corresponds to
an eligible (i.e. not violating any constraint in C) concrete
execution ηc = t1(µ(υj1)), ..., tn(µ(υjn)) for µ an injective
function from the set Υ = {υj1 , ..., υjn} of user variables
(also called symbolic users) to the given set U of users (since
µ is injective, distinct user variables are never mapped to
the same user).

Example 2.3. An excerpt of the symbolic reachability graph
for the TRW is depicted in Figure 3. The formulae labeling
the nodes are not shown in the figure for the sake of simplicity.
As an example, we show formula β3, attached to node 3 of
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Figure 3: An excerpt of the symbolic reachability
graph for the TRW

the graph, from which it is possible to execute t2:

¬p0 ∧ p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4 ∧ p5 ∧ p6∧
dt1 ∧ ¬dt2 ∧ dt3 ∧ dt4 ∧ ¬dt5∧
at2(υ2) ∧ ¬ht1(υ2) ∧ ¬ht3(υ2)∧
at5(υ1) ∧ ¬ht3(υ1) ∧ ¬ht2(υ1) ∧ υ1 6= υ2

Formula β3 encodes the fact that, in order for a user υ2
to be allowed to execute t2, the system must be in a state
where there are tokens in places p1, p5, and p6 while there
are no tokens in places p0, p2, p3, and p4 (first line), tasks
t1, t3, and t4 have been already executed while tasks t2
and t5 have not been executed (second line), user υ2 should
be authorized to perform t2 and should not have executed
neither t1 nor t3 (third line), and there should exist a user
υ1 (distinct from υ2) authorized to execute t5 who should
have executed neither t1 nor t3 (last line).

Concerning the labels on the edges of the symbolic reach-
ability graph, in Figure 3, a task-user pair t(υk) label-
ing an edge is abbreviated by t(k) for the sake of com-
pactness. So, for instance, the symbolic execution ηs =
t1(υ3), t3(υ3), t4(υ2), t2(υ2), t5(υ1) (cf. the well-formed path
identified by the blue nodes in Figure 3) represents all those
executions in which a symbolic user identified by υ3 first per-
forms task t1 followed by t3, then a symbolic user identified
by υ2 performs t4 and t2 in this order, and finally a symbolic
user identified by υ1 executes t5. If we apply an injective
function µ from the set Υ = {υ1, υ2, υ3} of user variables to
any finite set U of users (of cardinality at least three), the
corresponding execution ηc = µ(ηs) is eligible according to
the set C of SoD constraints shown in Figure 1.

The final action of the off-line step is to derive a non-
recursive Datalog program M (with negation) from the sym-
bolic reachability graph RG by generating a clause of the
form can do(υ, t)← βv for each node v in the graph RG.

Example 2.4. To illustrate, consider again node 3 in the
graph as done in Example 2.3. Then, the Datalog program
M will contain the following clause:

can do(t2 , υ2 )← ¬p0, p1,¬p2,¬p3,¬p4, p5, p6,
dt1,¬dt2, dt3, dt4,¬dt5,
at2(υ2),¬ht1(υ2),¬ht3(υ2),
at5(υ1),¬ht3(υ1),¬ht2(υ1), υ1 6= υ2.

where the comma stands for logical conjunction.

On-line step. To build a run-time monitor for the WSP, we
explain how to combine the Datalog program M obtained in
the off-line step with the authorization policy TA. For this,
the following observation is crucial. As shown in Example 2.4,
the formula βv contains invocations to the binary predicates
ati and hti. The former is the interface to the authorization
policy and it is such that a(u, t) holds iff (u, t) ∈ TA while
the latter keeps track of which user has executed which task,
i.e. h(t, u) means that t has been executed by u. Following an
established tradition (see, e.g., [16]) claiming that (variants
of) Datalog are adequate to express a wide range of access
control policy idioms, we assume a to be defined by a Datalog
program P . The predicate h is dynamic and defined by a
set H of (ground) facts which is updated after each task
execution. Thus, if the query can do(u, t) can be derived
from M,P,H (in symbols, M,P,H ` can do(u, t)), user u
can execute task t and the workflow can terminate while
satisfying the authorization policy and the authorization
constraints.

Example 2.5. For the TRW, let us consider the relation
TA presented after Example 2.1, which can be specified after
the RBAC model [25] by the Datalog program P :

ua(a, r1). ua(a, r2). ua(a, r3). ua(b, r2). ua(b, r3). ua(c, r2).
pa(r3, t1). pa(r2, t2). pa(r2, t3). pa(r1, t4). pa(r2, t5).
a(υ, τ) ← ua(υ, ρ), pa(ρ, τ).

where r1, r2, and r3 are roles, ua is the user-role assignment
(cf. first line of facts), pa is the role-task assignment (cf.
second line of facts), υ is a user variable, τ is a variable
ranging over tasks, and a is defined as the join of the relations
ua and pa (cf. Datalog clause in the last line). Notice that
P ` a(u, t) iff (u, t) ∈ TA for user u and task t.

An example run of the monitor derived from the symbolic
reachability graph in Figure 3 combined with the RBAC pol-
icy above is shown in Table 1: column ‘History’ shows which
facts are added to the set H and column ‘Answer’ reports
grant (deny, respectively) when the query in column ‘Query’
can (cannot, respectively) be derived from M,P,H. For
instance, there are two denied requests: in line 0, user a re-
quests to execute task t1 but this is not possible since a is the
only user authorized to execute t4, and if a executes t1, he/she
will no more be allowed to execute t4 because of the SoD
constraint between t1 and t4 (see Figure 1); in line 4, user b
requests to execute task t2 but again this is not possible since
b has already executed task t1 and this would violate the SoD
constraint between t1 and t2. All other requests are granted,
as they violate neither task execution nor authorization con-
straints. The execution resulting from this run of the monitor
is t1(b), t3(c), t4(a), t2(a), t5(b), which is derived from the

Table 1: A run of the monitor program for the TRW
# History Query Answer

0 ∅ can do(a, t1) deny
1 - can do(b, t1) grant
2 h(t1, b) can do(c, t3) grant
3 h(t3, c) can do(a, t4) grant
4 h(t4, a) can do(b, t2) deny
5 - can do(a, t2) grant
6 h(t2, a) can do(b, t5) grant
7 h(t5, b) - -



Figure 4: User actions necessary to specify and compose modules representing the TRW and MDW

Figure 5: MDW in extended BPM notation

symbolic execution t1(υ1), t3(υ3), t4(υ2), t2(υ2), t5(υ1) in the
graph of Figure 3 (cf. the path with the blue nodes; see also
Example 2.3) by applying the injective function µ mapping
υ1 to b, υ2 to a, and υ3 to c.

As described so far, our technique to synthesize run-time
monitors for the WSP is based on representing each workflow
with a single transition system. In [4], it is shown that
monitor synthesis done this way is not scalable due to state
space explosion. Additionally, the technique offers no support
to the reuse and composition of (selected parts of) workflow
specifications in larger workflows. We now explain how to
extend this technique to handle a composition of (modular)
workflows, making the approach scalable while fostering
workflow reuse.

2.2 Modular Design and Enactment
We introduce our approach for the modular design and

enactment of security-sensitive workflows by combining the
previously introduced TRW with another example workflow.

Example 2.6. Figure 5 shows the Moderate Discussion
Workflow (MDW) whose goal is to organize a discussion and
voting process in an organization. It is composed of four
tasks: Request (t1), Moderate Conference Call (t6), Moder-
ate e-mail Discussion (t7), and Validation (t5). Four SoD
constraints must be enforced: (t1, t6), (t6, t5), (t6, t7), and
(t7, t5). Again, each task is executed under the responsibility
of a user who is entitled to do so according to some authoriza-
tion policy, which we leave unspecified for the sake of brevity
and because the synthesis technique that we use generates
a monitor that can accommodate any authorization policy
(see Section 3.2 for details).

Notice that tasks t1 and t5 in Figures 1 and 5 are the same
in both TRW and MDW. The notion of security-sensitive
component introduced in this paper allows to reuse the spec-
ification of tasks t1 and t5 in different systems so that only

the specification of the parallel execution of tasks t2, t3,
and t4 for the TRW and t6 and t7 for the MDW must be
developed from scratch.

By using the approach in this paper, a process designer can
model both TRW and MDW by executing the following user
actions, that are also depicted in Figure 4 (where the elements
in black represent the internal specification of components,
the red dashed arrows represent inter-component execution
(control-flow) constraints and the blue dashed lines represent
inter-component authorization constraints):
UA1 specify the parallel execution of tasks t2, t3, and t4 as

a new component C234 for the TRW and of t6 and t7
as C67 for the MDW together with their authorization
constraints, i.e. SoD between t2 and t3 for TRW and
between t6 and t7 for MDW;

UA2 synthesize run-time monitors for the new components
C234 and C67 to be stored (together with the monitors)
in a repository for future use;

UA3 import, from the available workflow repository, the
security-sensitive components containing tasks t1 and
t5 in Figures 1 and 5, called C1 and C5, respectively;

UA4 define the control-flow among components; and
UA5 define inter-component authorization constraints.

As we will see, together with security-sensitive component
specifications, in the workflow repository it is also possible
to store the associated run-time monitors solving the run-
time version of the WSP. To enact the modularly designed
business processes TRW and MDW, the designer can simply
add an authorization policy and deploy the process to the
run-time environment. Behind the scenes, the monitors of the
various components are automatically combined to build one
for the composed processes, namely TRW and MDW. This
combination is done by using a set G of “gluing assertions,”
which are logical assertions connecting the components, i.e.
transferring control-flow and constraining the execution of
tasks in the next components.

The main result of this paper (Theorem 3.1) shows that
the combination of monitors M1, M234, and M5 synthesized
for components C1, C234 and C5, respectively, with their Dat-
alog authorization policies P1, P234, P5 and their execution
histories H1, H234, H5, and using the assertions in G, an-
swers to user requests in the same way as a monitor M
computed for the TRW as a single component. Formally,
M1,M234,M5, G, P1, P234, P5, H1, H234, H5 ` can do(u, t) iff
M,P,H ` can do(u, t). Therefore, a similar run as the one
shown in Table 1 for M can be obtained with M1, M234, M5.



Indeed, the simplicity of the TRW and MDW spoils the
advantages of a modular approach; the small dimension of
the workflows allows us to keep the paper to a reasonable size.
However, for large workflows—as we will see in Section 4—
the advantages are substantial. To give an intuition of this,
imagine replacing the tasks reused in both workflows, i.e. t1
and t5, with complex workflows: reusing their specifications
and synthesized run-time monitors in larger workflows in
which they are plugged, becomes much more interesting.

Each of the aforementioned user actions is based on the
approach and notions introduced in the rest of the paper:
UA1 and UA3 in Section 3; UA4 and UA5 in Section 3.1;
and UA2 in Section 3.2.

3. SECURITY-SENSITIVE WORKFLOW
COMPONENTS

The goal of this Section is to identify a refinement of the no-
tion of security-sensitive workflow, introduced in Section 2.1,
that can be modularly composed with others through an
appropriate interface. Technically, this is done by extending
and partitioning the state variables of the transition system
representing a security-sensitive workflow and then adding
an appropriate notion of interface to support composition.
The resulting notion is called a security-sensitive component.
Below, we provide the key ideas underlying our techniques
while omitting some of the formal details, which are available
in a technical report [13].

Example 3.1. Preliminarily, we give some intuitions about
the notion of security-sensitive component by considering
the modular specification of both the TRW and MDW. Fig-
ure 6 shows the four components C1, C234, C67, and C5 whose
composition gives both TRW and MDW. Each component is
represented as a Petri net that is automatically derived from
the BPMN model of Figure 4 (in a way similar to the one
discussed in Section 2.1 to derive the Petri net at the top of
Figure 2 from the BPMN model in Figure 1). The left side
of the figure shows the extended Petri nets representing the
four components: circles represent places, rectangles with a
man icon transitions to be executed under the responsibility
of users, rectangles without the icon transitions not need-
ing human intervention, (black) dashed lines represent SoD
constraints between tasks belonging to the same component,
and (black) solid arrows the control flow in the same com-
ponent. The right side of the figure shows how to connect
these components in order to obtain the TRW and the MDW:
(blue) dashed lines represent SoD constraints between tasks
belonging to distinct components and (red) dashed arrows
the control flow between two components.

The control flow between two components is outside of the
semantics of extended Petri nets. For example, a token in
place p0 of C1 goes to p1 of C1 after the execution of t1 and, at
the same time a token is put in place p1 of C234 because of the
(red) dashed arrow from p1 in C1 to p0 in C234 representing
an inter-component execution constraint. When the token is
in p0, the system executes the split transition s in C234 that
removes the token from p0 and puts one in p1, p2, and p3 so
that t2, t3, and t4 in C234 become enabled. Notice that the
execution of t2 is constrained by a SoD constraint from task
t1 in component C1 (dashed arrow between t1 in C1 and t2
in C234): this means that the user who has executed t1 in C1
cannot execute also t2 in C234.

Refined transition systems. Recall the description of

the transition system S = (V,Tr) associated to the TRW
and derived from the Petri net at the top of Figure 2 given
in Example 2.2. The state variables V can be partitioned
in the following (disjoint) sets: P containing the Boolean
variables pi’s encoding the fact that a token is in place pi
of the Petri net or not, D containing the Boolean variables
dti’s encoding the fact that the task ti has been executed or
not, A containing the Boolean arrays ati’s encoding the fact
that a certain user is entitled to execute task ti or not, and
H containing the Boolean arrays hti’s encoding the fact that
a certain user has executed or not task ti. To support the
definition of authorization constraints across components,
we add a set C of Boolean arrays cti’s to the state variables
of the transition system in order to represent SoD or BoD
constraints (involving task ti) together with a set B of (so-
called) always constraints fixing the values of the variables
in C as Boolean combinations of the (history) variables in
H. Formally, we assume B to contain a formula of the form
∀u.v(u)⇔ hst , where v is in C, u is a variable ranging over
users, and hst is a Boolean combination of atoms of the form
w(u) with w ∈ H. A (refined) transition system is a tuple of
the form ((P,D,A,H,C),Tr , B) where the P , D, A, H, and
C are sets of state variables, Tr is the set of transitions, and
B is the set of always constraints.

Example 3.2. We refine the transition system S = (V,Tr)
in Example 2.2 as the tuple ((P,D,A,H,C),Tr ′, B) intro-
duced above. The sets of state variables are defined as
P = {p0, ..., p7}, D = {dt1, ..., dt5}, A = {at1, ..., at5},
H = {ht1, ..., ht5}, and C = {ct1, ..., ct5}. The set B
of always constraints contains the formulae: ∀υ.ct1(υ) ⇔
T , ∀υ.ct2(υ) ⇔ ¬ht1(υ) ∧ ¬ht3(υ), ∀υ.ct3(υ) ⇔ ¬ht2(υ),
∀υ.ct4(υ) ⇔ ¬ht1(υ), and ∀υ.ct5(υ) ⇔ ¬ht1(υ) ∧ ¬ht3(υ).
The set Tr ′ contains the transitions shown in Table 2. The
table at the bottom of Figure 2 can be derived from Table 2
by simply replacing each occurrence of the cti’s with the for-
mula hst in the corresponding always constraint in B. While
in this case the cti’s play the simple role of abbreviations,
they are crucial to support the specification of authorization
constraints spanning across components. This will be clear
in Example 3.3 and Section 3.1 below, when considering the
specification of the TRW as a composition of sub-modules.

The last observation above indeed holds in general: given a
refined transition system ((P,D,A,H,C),Tr ′, B), it is always
possible to build a transition system (V,Tr) by taking V as
the union of P , D, A, H, C, and Tr to contain the transitions
obtained by replacing each cti in Tr ′ with the corresponding
hst in B. In this way, the classical interleaving semantics

Table 2: Refined transitions
id enabled action

CF Auth CF Auth

t1(u) p0∧¬dt1 at1(u) ∧ ct1(u) p0, p1, p2, p3, dt1
:= F, T, T, T, T

ht1(u)
:= T

t2(u) p1∧¬dt2 at2(u) ∧ ct2(u) p1, p4, dt2
:= F, T, T

ht2(u)
:= T

t3(u) p2∧¬dt3 at3(u) ∧ ct3(u) p2, p5, dt3
:= F, T, T

ht3(u)
:= T

t4(u) p3∧¬dt4 at4(u) ∧ ct4(u) p3, p6, dt4
:= F, T, T

ht4(u)
:= T

t5(u) p4∧p5∧
p6∧¬dt5

at5(u) ∧ ct5(u) p4, p5, p6, p7, dt5
:= F, F, F, T, T

ht5(u)
:= T



Figure 6: Security-sensitive components (left) and how to glue them together (right)

defined for (V,Tr) in [4] can also be adopted for the refined
transition system ((P,D,A,H,C),Tr ′, B).
Adding the interface. A security-sensitive (work-
flow) component is a pair (S, Int) where S =
((P,D,A,H,C),Tr , B) is a refined transition system and
Int is its interface. Intuitively, Int identifies the variables
of S whose values can be set by another component (called
input variables, indicated by the super-script i) and those
that are set by the component itself (called output variables,
indicated by the super-script o). Formally, Int is a tuple of
the form (A,P i, P o, Ho, Ci) where
• P i ⊆ P and each pi ∈ P i is such that pi := T does not

occur in the parallel assignments of an event in Tr ,
• P o ⊆ P and each po ∈ P o is such that po := T occurs

in the parallel assignments of an event in Tr whereas
po := F does not,
• Ho ⊆ H, Ci ⊆ C, and
• only the variables in (C \ Ci) ∪ Ho can occur in a

symbolic always constraint of B.

A is included in Int as the values of its variables are induced
by the authorization policy TA specifying which users are
entitled to perform which task. When P i, P o, Ho, and
Ci are all empty, the security-sensitive component (S, Int)
can only be interfaced with an authorization policy via the
interface variables in A. The state variables in D are only
used internally, to indicate that a task has been or has not
been executed; thus, none of them is exposed in the interface
Int . The variables in P , H, and C are local to S but some of
them can be exposed in the interface in order to enable the
combination of S with other components in a way which will
be described in Section 3.1. The requirement that variables
in P i are not assigned the value T (rue) by any transition
of the component allows their values to be determined by
those in another component. Dually, the requirement that
variables in P o can only be assigned the value T (rue) by any
transition of the component allows them to determine the
values of variables in another component. Similarly to the
values of the variables in P i, those of the variables in Ci are
fixed when combining the module with another; this is the
reason for which only the variables in C \ Ci can occur in
the always constraints of the component.

Example 3.3. We now specify the interface of the compo-
nents presented in Example 3.1. For components C1 and
C5 (supporting UA3) we set P i

y := {p0y}, P o
y := {p1y},

Ho
y := {hty} (for y = 1, 5), Ci

1 := ∅, and Ci
5 := {cit5} The

interface of each component is the following: p0y is the input
place, p1y is the output place, and the history variable hty

can be used to constrain the execution of tasks in other
components (for instance of t2 in the TRW as t1 and t2
are involved in a SoD). Notice that the execution of task
t1 cannot be constrained by the execution of tasks in other
components (thus Ci

1 := ∅) since t1 is always executed before
all other tasks and cannot possibly be influenced by their
execution. Contrarily, Ci

5 := {cit5}, since t5 is always exe-
cuted after all other tasks. In particular, cit5 will be defined
so as to satisfy the SoD constraints between t5 and t2 or
t3 for TRW and t6 or t7 for MDW. For component C234
(supporting UA1) we set P i

234 := {p0234}, P o
234 := {p7234},

Ho
234 := {ht2, ht3}, and Ci

234 := {cit2, cit4}. The interface of
C67 is similar to that of C234. Section 3.1 below explains how
components C1, C234, C67, and C5 can be “glued together” to
build TRW and MDW.

3.1 Gluing Together Security-Sensitive Com-
ponents

We now show how components can be combined together
in order to build other, more complex, components. In the
same way as the transition systems and interfaces presented
above are derived from the internal elements of workflow
components specified in BPMN, also the elements used to
compose them (gluing assertions) are derived automatically
from a high-level specification (e.g., the red arrows and blue
lines in Figures 4 and 6).

Formally, for l = 1, 2, let (Sl, Int l) be a security-sensitive
component where Int l = (A,P i

l , P
o
l ,H

o
l , C

i
l ) and Sl =

((Pl, Dl, Al, Hl, Cl),Tr l, Bl) is such that P1 and P2, D1 and
D2, A1 and A2, H1 and H2, C1 and C2 are pairwise disjoint
sets. Furthermore, let G = GEC ∪GAuth be a set of gluing
assertions over Int1 and Int2, where GEC is a set of formu-
lae of the form pi ⇔ po for pi ∈ P i

k and po ∈ P o
j , called

inter execution constraints; and GAuth is a set of always
constraints in which only the variables in Ci

k ∪Ho
j may occur,

for k, j = 1, 2 and k 6= j. Intuitively, the gluing assertions in
G specify inter component constraints; those in GEC spec-
ify how the control flow is passed from one component to
another, whereas those in GAuth specify authorization con-
straints across components, i.e. how the fact that a task in
a component is executed by a certain user constrains the
execution of a task in another component by a sub-set of the
users entitled to do so.

The security-sensitive component (S, Int) obtained by



gluing (S1, Int1) and (S2, Int2) together with G, in sym-
bols (S, Int) = (S1, Int1) ⊕G (S2, Int2), is defined as S =
((P,D,A,H,C),Tr , B) and Int = (A,P i, P o, Ho, Ci), where
• P = P1∪P2, D = D1∪D2, A = A1∪A2, H = H1∪H2,
C = C1 ∪ C2,
• Tr := [Tr1]GEC

∪ [Tr2]GEC
where [Tr j ]GEC

:=
{[tr j ]GEC

|tr j ∈ Tr j},
• B = B1 ∪B2 ∪GAuth,
• P i = {p ∈ (P i

1 ∪ P i
2)|p does not occur in GEC},

• P o = {p ∈ (P o
1 ∪ P o

2 )|p does not occur in GEC},
• Ho = Ho

1 ∪Ho
2 ,

• Ci = {c ∈ (Ci
1 ∪ Ci

2)|c does not occur in GAuth},
and [tr j ]GEC

is obtained from tr j by adding the assignment

pi := b if pi is in P i
j , there exists an inter execution constraint

of the form pi ⇔ po in GEC, po is in P o
k , and po := b is among

the parallel assignments of tr j ; otherwise, tr j is returned
unchanged, for j, k = 1, 2 and j 6= k.

The definition is well formed since S is obviously a security-
sensitive transition system and Int satisfies all the structural
constraints defined above.

Example 3.4. Let us consider components C1 and C234
of previous examples. We glue them together by using
the following set G = GEC ∪ GAuth of gluing assertions
where GEC := {p11 ⇔ p0234} and GAuth := {∀u.cit2(u) ⇔
¬ht1(u),∀u.cit4(u) ⇔ ¬ht1(u)}. GEC and GAuth support
UA4 and UA5, respectively (see Figure 4). The inter ex-
ecution constraint in GEC corresponds to the dashed ar-
row connecting p1 in component C1 (p11) to p0 in compo-
nent C234 (p0234) in Figure 6. The always constraints in
GAuth formalize the dashed lines linking task t1 of com-
ponent C1 to tasks t2 and t4 of component C234. Notice
that C1 ⊕G C234 can be combined with C5 to form a com-
ponent corresponding to the TRW in Figure 1. This is
possible by considering the following set G′ = G′

EC ∪G
′
Auth

of gluing assertions where G′
EC := {p7234 ⇔ p05} and

G′
Auth := {∀u.cit5(u)⇔ ¬ht2(u) ∧ ¬ht3(u)}.
The operator ⊕G is both commutative and associative.

This implies the desirable property that the result of com-
bining components does not depend on the order in which
these are imported (provided the execution and authorization
constraints are unchanged).

3.2 Modular Synthesis of Run-time Monitors
Section 2.1 illustrates the methodology to automatically

derive a monitor capable of solving the run-time version of
the WSP for security-sensitive workflow systems. As argued
above, the notions of security-sensitive workflow component
and that of security-sensitive workflow system are equivalent.
Below, let M be the function taking as input a security-
sensitive component SC = ((P,D,A,H,C),Tr ′, B) and re-
turning a security-sensitive transition system S = (V,Tr)
as explained at the end of Example 3.2. Based on this ob-
servation, we show how to turn the monolithic synthesis
methodology of Section 2.1 into a modular one.

LetRM be the function taking as input a security-sensitive
transition system S = (V,Tr) and returning a Datalog pro-
gram RM(S) defining a predicate can do(u, t) such that
user u can execute task t and the workflow S can successfully
terminate. We define the function RMc that takes as input
a security-sensitive component SC = ((P,D,A,H,C),Tr , B)
as follows: RMc(SC) = RM(M(Sc)), i.e. first it transforms
the security-sensitive component into a security-sensitive

transition system and then applies the synthesis procedure
of Section 2.1.

We now show how to reuse RMc for the modular con-
struction of run-time monitors for the WSP, i.e. we build a
monitor for a composite component by combining those for
their constituent components. Let G = GEC ∪GAuth be a
set of gluing assertions where GEC is a set of inter execution
constraints and GAuth a set of always constraints over an
interface (A,P i, P o, Ho, Ci), then 〈G〉 := 〈GEC〉 ∪ 〈GAuth〉,
where 〈GEC〉 := {pi ← po|pi ⇔ po ∈ GEC} and 〈GAuth〉 :=
{ci(u)← hst i(u)|∀u.ci(u)⇔ hst i(u) ∈ GAuth}. Intuitively,
the shape of the Datalog clauses in 〈GEC〉 models how the
execution flow is transferred from a component (that with an
output place) to the other (that with an input place), while
〈GAuth〉 models how the execution of tasks in one component
constrains the set of users who can execute tasks in another.
Recall that, in Figures 4 and 6, the Datalog clauses in 〈GEC〉
are shown as dashed red arrows and those in 〈GAuth〉 as
dashed blue lines.

Theorem 3.1. Let (Sk, Intk) be a security-sensitive com-
ponent, Sk = ((Pk, Dk, Ak, Hk, Ck),Trk, Bk), Hk is a set of
(history) facts over Hk, and Pk a Datalog program (for the au-
thorization policy) over Ak, for k = 1, 2. If G is a set of gluing
assertions over Int1 and Int2, then RM(S),H1,H2,P1,P2 `
can do(u, t) iff RM(S1),H1,P1, 〈G〉,RM(S2),H2,P2 `
can do(u, t), where (S, Int) = (S1, Int1)⊕G (S2, Int2).

The idea underlying the proof is that the monitors for
the components are computed by considering all possible
values for the variables in their interfaces. The additional
constraints in the gluing assertions simply consider a sub-set
of all these values by specifying how the execution flow goes
from one component to the other and how the authorization
constraints across components further constrain the possible
executions of a component depending on which users have
executed certain tasks in the other.

Theorem 3.1 supports action UA2 in Section 2; additional
applications are investigated in the section below.

4. APPLICATIONS
We have performed experiments focusing on two aspects:

the scalability of the technique for the synthesis of run-time
monitors for security-sensitive workflows (Section 4.1); and
the design of a plug-in for the reuse of workflows and re-
lated run-time monitors inside an editor for security-sensitive
workflows (Section 4.2).

4.1 Scalability
To show the practical scalability of our approach, we have

performed a set of experiments with the random workflow
generator from [4], which is capable of generating random
security-sensitive workflows with an arbitrary number of
tasks and composing them sequentially. For the experiments,
we have generated components with a fixed size of 5 tasks
and a varying number of constraints. The number of con-
straints is specified as a percentage (5%, 10% and 20%) of
the number of tasks in each component for intra-component
constraints and as a percentage of the total number of tasks
for inter-component constraints3. Thus, in the configurations

3These configurations are taken from the experimental setup
in [11], since the random generator was also based on the
same work.



Figure 7: Time taken to synthesize a monitor vary-
ing with the number of tasks

5% and 10% there are no intra-component constraints, while
in the configuration 20% there is one for each component; e.g.,
for a workflow with 100 tasks, there are 5 inter-component
constraints in the configuration 5%, 10 in the configuration
10% and 20 in the configuration 20%. The experiments have
been conducted on a MacBook Air 2014 with a 1.3GHz dual-
core Intel Core i5 processor and 8GB of RAM running MAC
OS X 10.10.2. The results are shown in Figure 7, in which
the x-axis contains the total number of tasks in a workflow
divided by 10 (the total number of components is the number
in the x-axis times 2) and the y-axis shows the total time
in seconds taken by the monitor synthesis procedure RMc

described above. Each data point is taken as the average
of running RMc 5 times for each configuration. Figure 7
suggests a linear (instead of the expected exponential!) be-
havior with respect to the number of tasks on this set of
synthetic benchmarks. Indeed, without a modular approach
the monitor synthesis technique is limited to only a few tasks,
due to state space explosion.

We do not provide detailed timings for the on-line phase
(i.e. how long does it take to answer authorization queries
by the synthesized monitors) as these are under a second for
workflows with (up to) 300 tasks and under 2 seconds for
workflows (up to) 500 tasks. In case of multiple instances
of the same workflows, we run a distinct (and independent)
instance of the synthesized monitor; thus, the timings are
similar to those of considering just one instance.

4.2 Reuse
It is possible to use the result of Theorem 3.1 to generate

monitors for workflows specified as composed components
and to reuse the monitor across different business processes
(e.g., UA3 in Section 2).

We have implemented the modular monitor synthesis tech-
nique as a tool composed of a single back-end developed in
Python (ca. 3000 lines of code) and a series of front-ends
which integrate with different BPM systems. The back-end
takes as input specifications of modular workflows in the
form of BPMN files (in XML), extended with support for
authorization constraints. It derives a transition system
for each component, the set of gluing assertions, and subse-
quently generates the corresponding run-time monitors, as
described in Section 3.2. The front-end is responsible for
calling the back-end and integrating with a workflow and
monitor repository to store and retrieve the results of the
back-end.

Figure 8: Architecture of a BPM design tool with
a repository of models and monitors

To use the tool, process designers only have to input the
graphical specification of the workflow and the constraints.
The whole process of translating from BPMN to transition
systems, applying the monitor synthesis procedure, storing,
combining and retrieving monitors and workflows is auto-
matic and happens behind the scenes. Thus, the tool does
not require any knowledge besides BPMN modeling to be
used.

The monitors that are stored in the repository are paramet-
ric wrt the user-task authorization relation, i.e. a synthesized
monitor can accommodate several specifications of authoriza-
tion policy (cf. Section 3.2). This allows secure enactment
to be handled by simply composing together individual mon-
itors.

An example front-end, integrated with the SAP HANA
Workflow (HWF) engine was described in [6]. At design-time,
execution constraints are modeled in BPMN and authoriza-
tion constraints are input as part of the documentation of
tasks, then HWF translates BPMN models into executable
SQL procedures that are stored in the integrated HANA
repository. The monitor synthesizer is invoked when a user
calls the HWF compiler and it generates an SQL view4 that
is queried at run-time by the HWF execution engine. The
monitor views are also stored in the HANA repository. Work-
flows and monitors can therefore be read from the repository
and reused across deployments. At run-time, a synthesized
monitor is invoked whenever a user tries to execute a task
from the graphical user interface.

Our approach can be easily integrated into other existing
BPM systems offering editors and repositories of business
processes as outlined in the high-level architecture of Fig-
ure 8, where rectangles represent components, ovals represent
storage systems, R-labeled links represent request/response
communication between components and arrows represent
access to storage. The BPM component represents exist-
ing solutions including a modeling environment for business
processes, where the Process Composer sub-component con-
tains a BPMN editor. The Monitor Synthesizer component
implements the procedure described in Section 3.2 to com-
pute (modular) monitors for workflow components and their
composition modeled in the process composer. The Repos-
itory component represents a storage system for workflow
models and synthesized monitors. Note that such repository
may be part of the BPM solution or remotely located (e.g.,
Apromore [24]). The modeler interacts with the process com-
poser with a request/response relation. The same relation
exists between the process composer and the monitor synthe-
sizer to request the synthesis of a run-time monitor for the
BPMN model under specification. The process composer can
store/retrieve BPMN models together with the synthesized

4Aggregation-free SQL and non-recursive Datalog are equiv-
alent [1] and this translation is straightforward



monitors to/from the repository. The business process mod-
eling and repository components in the proposed architecture
are part of common reference architectures, e.g., [32].

5. CONCLUSIONS
The main contributions of the paper are (i) a modular

approach to the synthesis of run-time monitors for (reusable)
security-sensitive workflow components, (ii) the demonstra-
tion of the scalability of modular monitor synthesis by means
of experiments, and (iii) a description of a tool integrating
an editor with a repository of business processes (capable
of storing run-time monitors) for business reuse. We regard
these findings as the first significant step towards the de-
velopment of efficient and practical enactment mechanisms
for security-sensitive workflows, which go beyond the more
theoretically oriented solutions to the WSP available in the
literature.

5.1 Related and Future Work
Solutions to the WSP. Wang and Li [31] proposed a
reduction of the WSP to SAT, which allows the use of off-
the-shelf SAT solvers. The authors also showed that, with
only equality and inequality relations, the WSP is fixed-
parameter tractable (FPT) in the number of tasks. Later,
Crampton et al. [10] improved the complexity bound for
the WSP and extended the types of constraints for which it
remains FPT. There are many works that take advantage of
the FPT complexity result and design algorithms to solve
the WSP with different kinds of constraints. The works in [8,
5] experimentally compare the results of FPT algorithms
against those of a SAT solver on workflows of up to 30 tasks
and conclude that FPT algorithms are better than those
based on the SAT solver (the latter runs out of memory).
[11] employs model checking on a fragment of LTL and
experiments with workflows of up to 220 tasks.

On the practical side, our experiments show the scalability
of our approach on workflows larger (up to 500 tasks) than
those of the work above. On the theoretical side, the algo-
rithms based on the use of SAT solving cannot cope with
arbitrary authorization policies, while those based on FPT
results must be invoked from scratch on “similar” instances
of the WSP (a new instance is obtained from the previous
one by asserting that a certain user has executed a given
task at the previous step). Instead, our approach is capable
of synthesizing a monitor for arbitrary authorization policies
in the on-line phase and needs to keep track of which user
has executed which tasks according to a given authorization
policy at run-time, thereby significantly reducing the time
to answer authorization requests, which—as pointed out in
Section 4.1—remains under 2 seconds for workflows with 500
tasks. Even if algorithms based on SAT or FPT can be faster
on smaller instances than our approach because the off-line
phase requires to pre-compute all possible execution paths,
our monitor synthesis approach offers the advantage of doing
this just once and reuse the resulting monitors with arbitrary
authorization policies while it is unclear (if possible at all)
how this can be done with SAT- or FPT-based algorithms.
Resiliency. Workflow resiliency relates to the unavailability
of users during the execution of a workflow instance. Mace
et al. [17] discussed quantitative workflow resiliency, i.e. how
likely a workflow is to terminate with an associated autho-
rization policy and user availability model. Their solution
uses Markov Decision Processes and exploits the off-line gen-

eration of an assignment tree, which shows all the possible
executions of the workflow with different user assignments.
The main difference between their assignment tree and our
reachability graph is the fact that we use symbolic users,
which allows us to accommodate different authorization poli-
cies at run-time. Crampton et al. [9] also considered a version
of the problem called Valued WSP, where costs are associ-
ated to the violation of policies and constraints. A solution
to the Valued WSP is an assignment of users to tasks with
minimal cost and this problem was also shown to be FPT
with user-independent constraints. It would be interesting
to extend our approach to cope with resiliency or consider
the costs of satisfying certain authorization constraints and
synthesize risk-based monitors for the WSP. This is left as
future work.
Modularity and reuse of workflow patterns. Reuse in
Business Process Management has been an intense topic of
research and industrial application; see, e.g., [14, 12]. Several
works in the field of Petri nets have investigated modularity;
see, e.g., [19]. None of these works addresses security issues
as we do here. We observe that Theorem 3.1 may be used
together with available techniques for decomposing large
business processes; see, e.g., [23]. This would enable the
synthesis of monitors that would be otherwise impossible to
derive when considering monolithic processes because of the
state-space explosion problem. Moreover, since workflows
are built from basic control-flow patterns, see, e.g., [29, 15],
a corollary of Theorem 3.1 is that it is possible to compute
reachability graphs once for each basic security-sensitive
workflow model, store the result, and modularly combine it
with others along the lines of Section 3.2. In the following,
we elaborate a bit on this idea according to which a workflow
is seen as a combination of basic components (e.g., sequential,
alternative and exclusive execution) that can be expressed
by the gluing operator ⊕ introduced in Section 3.1.

For the sake of simplicity, we consider the sequential, paral-
lel, and alternative composition of just two security-sensitive
workflow components (S1, Int1) and (S2, Int2) (the general-
ization to n components is straightforward). We also assume
that there is just one input and just one output place in
both components (this is satisfied for the important class of
workflow nets; see, e.g., [27]).
Sequential composition. It is sufficient to consider a set
G = GEC ∪ GAuth of gluing assertions over Int1 and Int2
such that GEC = {pi2 ⇔ po1}. Notice that (S1, Int1) ⊕G

(S2, Int2) = (S2, Int2)⊕G (S1, Int1) but because the gluing
assertion in GEC is pi2 ⇔ po1, and not po2 ⇔ pi1, the process
specified by component (S1, Int1) will always be executed
before that specified by (S2, Int2).
Parallel composition. We need to preliminarily introduce
two other components, each containing a single transition,
one for splitting (and split) and one for joining (and join)
the execution flow. The transitions are as follows:

Tras := {p0as ∧ ¬das → p0as, p1as, p2s, das := F, T, T, T}
Traj := {q0aj ∧ q1aj ∧ ¬daj →

q0aj , q1aj , q2aj , daj := F, F, T, T}

Then, it is sufficient to consider a set G = GEC ∪ GAuth
of gluing assertions over Int1, Int2, Intas, and Intaj (recall
that the gluing operator is associative) such that GEC =
{p1as ⇔ pi1, p2as ⇔ pi2, p

o
1 ⇔ q0aj , p

o
2 ⇔ q1aj}.

Alternative composition. Similarly to parallel compo-
sition, we need to introduce two other components, each
containing two non-deterministic transitions (or split and or



join) to route the execution flow in one of the two components
(S1, Int1) or (S2, Int2). The transitions are

Tros :=


p0os ∧ ¬dos →
p0os, p1os, p2s, dos := F, T, F, T,

p0os ∧ ¬dos →
p0os, p1os, p2s, dos := F, F, T, T


Troj :=

{
q0oj ∧ ¬doj → q0oj , q2oj , doj := F, T, T,
q1oj ∧ ¬doj → q1oj , q2oj , doj := F, T, T

}
Then, it is sufficient to consider a set G = GEC ∪GAuth of
gluing assertions over Int1, Int2, Intos, and Intoj such that
GEC = {p1os ⇔ pi1, p2os ⇔ pi2, p

o
1 ⇔ q0oj , p

o
2 ⇔ q1oj}.

Tool development. We plan to integrate our prototype
with other front-ends and perform extensive experiments
concerning modularity and reuse of business processes avail-
able in repositories and libraries, such as the SAP Business
Process Repository.5
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