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Abstract. Applying Cyber Threat Intelligence for active cyber defence,
while potentially very beneficial, is currently limited to predominantly
manual use. In this paper, we propose an automated approach for using
Cyber Threat Intelligence during incident response by gathering Tac-
tics, Techniques and Procedures available on intelligence reports, map-
ping them to network incidents, and then utilising this map to create
attack patterns for specific threats. We consider our method actionable
because it provides the operator with contextualised Cyber Threat In-
telligence related to observed network incidents in the form of a ranked
list of potential related threats, all based on patterns matched with the
incidents.
We evaluate our approach with publicly available samples of different
malware families. Our analysis of the results shows that our method
can reliably match network incidents with intelligence reports and relate
them to these threats. The approach allows increasing the automation
of its use, thus addressing one of the major limiting factors of effective
use of suitable Cyber Threat Intelligence.

1 Introduction

In our ever more digital and online society it is essential for organizations to
properly protect themselves against cyber threats. Related information, so called
Cyber Threat Intelligence (CTI), includes analysed knowledge about capabili-
ties, infrastructure, methods, and victims of cyber threat actors. As such, this
intelligence has the potential to help organizations to better perform threat de-
tection, incident response, threat hunting, and risk management as well as to
make strategic decisions to protect themselves. And the standardisation of CTI
information allows organisations to gather this intelligence from different CTI
sources.

Threat Intelligence can be divided in different groups based on their level
of detail and long-term use, including Technical and Tactical [1]. Examples of
Technical CTI include Indicators of Compromise (IoC) such as hashes of infected
files, known malicious IP addresses and domain names. Some of this Technical
CTI is easy to use: IoCs can be matched with network traffic or endpoint infor-
mation in real-time to generate alerts that indicate a network intrusion is taking
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place. However, this relies on aspects that are easy for attackers to change, for
example by simply acquiring new infrastructure or recompiling a malware with
slightly different code. This limits how helpful such CTI use is for the detection
of more sophisticated attacks.

Tactical intelligence describes not just isolated IoCs but also the Tactics,
Techniques and Procedures (TTPs) used by adversaries. TTPs are useful for in-
cident response because they are harder for an attacker to change than IoCs. The
problem with Tactical intelligence is that, although there are plenty initiatives
for standardisation and usage of Cyber Threat Intelligence (CTI), there cur-
rently is no easy, automatic way to ingest it into threat detection systems. This
results in a lack of automated Tactical CTI use on incident response [2] [3] [4]
and by consequence most incident response teams verify CTI manually if at all.

In this paper we present a solution that allows the use of higher level CTI in
an easier and (semi)-automated way. We do that by automating the gathering
of relevant CTI reports, associating it with known threats described by these
reports, then mapping them to network patterns of observable events. Our core
contributions include allowing the (automated) use of CTI during detection and
incident response, providing context to alerts in form of ranked related CTI,
and the automation of an important step in the response by providing the useful
alerts.

With this method, work that is currently done manually, or not at all, can be
largely automated and done as soon as a threat becomes known. This process can
be highly beneficial for current scenarios were the lack of a similar automation
makes it hard to properly respond to incidents. Our method can also be done as
a preparation step for any company that wants to improve its usage of threat
intelligence in advance rather than only when unknown incidents are observed
on the organization’s network.

We evaluate the approach by taking 27 samples of 4 different families of
malware/ransomware, automatically generating patterns for them and cross-
validating the usage of patterns between these families. We find that the ap-
proach is able to build patterns based on intelligence reports that capture the
families with high accuracy and thus provide context to network incidents. We
also find that availability of suitable high-level CTI is currently limited. How-
ever, with an easier way to consume such CTI by linking it to network events
now in place, the value of such CTI increases. To further support the availability
of usable CTI we plan to look at improving the generation of (higher level) CTI
in future work.

The remainder of the paper is organised as follows. Section 2 introduces the
general scenario on how Cyber Threat Intelligence is currently used, with the
motivation for a more automated approach, and then summarizes the state-of-
the-art in actionability and automation for CTI. Section 3 presents our method-
ology and its core components in detail. Section 4 describes our implementation
as well as its chosen platforms and formats for our tests, and then discusses the
experimental results. An finally Section 5 highlights our conclusions and future
work directions.
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2 Background and Related Work

In this section we sketch how Cyber Threat Intelligence (CTI) is currently used
in network intrusion detection also defining some related terminology, and then
review related work.

2.1 Current Situation

Figure 1 shows an example setup of a Network Intrusion Detection System
(NIDS) generating alerts about incidents for analysis while using some form of
CTI. Blacklists are usually implemented by sub modules of the NIDS, while the
event correlation could also be implemented externally by a Security Informa-
tion and Event Management (SIEM) or a Security Orchestration, Automation
and Response (SOAR).

Fig. 1. A Diagram of a Simple NIDS Solution

To identify attacks based on (correlated) NIDS events, a Cyber Security In-
cident Response Team (CSIRT) usually resorts to CTI available on a Threat
Intelligence Platform (TIP) or in specific intelligence feeds. CTI is usually ag-
gregated in the form of reports related to a threat or a campaign, although a
report can also contain a compilation of many other reports. According to the
authors on [4], while doing a Threat Intelligence and Attack Path Analysis for
example, it is necessary to acquire information about observables from a TIP to
see if they match known Indicator of Compromise (IoC)s.

Features from events monitored in a network are called observables. When
an atomic observable, like an IP address or payload hash, is potentially linked to
security breaches, it is called an Indicator of Compromise (IoC). IoCs are non-
contextual CTI that allow incident response to be executed in an automated
(or semi-automated) manner, e.g. through blacklisting, which also holds as a
valid approach even during surges of data to analyse. But for higher-level CTI,
such as Tactical and Operational, analysts manually review events in network
incidents and compare them with reports from CTI feeds. This manual approach
is typically for active defence using higher-level CTI [2].
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Yet the more contextual information provided by these higher-level CTI is
needed in the majority of the cases to properly analyse incidents. The manual
process to acquire required intelligence becomes a problem especially when at-
tack campaigns flood the NIDS with information, creating surges of data to be
analysed.

As the authors on [2] point out, active defence with the help of CTI is mostly
done manually for these cases. In this scenario, some automation is required to
improve the capability of responding to threats, which would allow the CSIRT
to better act on the intelligence received. Thus, automation of its application on
incident response would require making the use of CTI more actionable [3].

2.2 Related Work

Most of the recent works on Cyber Threat Intelligence focus on managing Indi-
cators of Compromise [5], gathering unstructured Open Source Cyber Threat In-
telligence to extract Indicators, Tactics, Techniques and Procedures from them,
with a broad usage of Natural Language Processing (NLP) for these cases [6,7],
and assessing the quality of Open Source Cyber Threat Intelligence [8–11] or
the formats used by them [12]. Some also focus on generating CTI from network
events for specialised use case scenarios [13], and improving the visualisation of
CTI.

There is a broad acceptance that there is a need for more semi-automated
or actionable forms of consuming Cyber Threat Intelligence during incident re-
sponse [2]. Actionability in this context is the capability of reacting during net-
work incidents while using the knowledge provided by CTI. As mentioned, there
are some recent works aiming to make the use or creation of CTI more actionable
by including semi-automated mechanisms. A notable work on the use of NLP
is done by the authors on [14], where they propose a trigger mechanism to cre-
ate an actionable CTI discovery system. It focus on portraying the relationship
between IoCs and campaign stages to generate actionable CTI from intelligence
reports by using NLP. They try to explain the attack stages by using keywords
that would represent the specific stage.

Some other works try to focus on standardisation and on how platforms can
improve the overall presentation of their reports and their usability. The authors
on [15] present a list of software functions that should be implemented by CTI
sharing platforms in order to support the intelligence cycle to generate actionable
threat intelligence. They focus on specific functions that could be added to these
platforms in order to improve the actionability of generated CTI when shared
between multiple entities.

The work on [12] compares how different data formats try to standardise the
integration of response mechanisms such as firewalls with the feedback received
from existing CTI artifacts and precise identification of workflows. They provide
an analyses on how the integration of standardised formats for CTI representa-
tion and decision making on incident response can lead to more precise defensive
actions.
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As for implementation of actionable CTI on defense, the authors on [16] pro-
pose the integration of the information from intelligence platforms into Security-
Policy-Controlled Systems (SPCS) in a more automated manner. By assuming
that the information extracted from this platforms support detection of threats
and that SPCS focus on responding to threats, they suggest two approaches
to integrate these detection and response scenarios: A direct integration with
intelligence obtained is received and processed directly by security-critical sys-
tems, and an indirect one where it is integrated to the security tools used by the
organisation.

The work [17] combines a preparation step with application of Cyber Threat
Intelligence to improve the usage of Indicators of Compromise on Incident Re-
sponse. It does not focus on more behavioural aspects linked to Tactics, Tech-
niques and Procedures, but rather on revealing patterns of malicious activities
by correlating IoCs from multiple malware instances to CTI reports available in
different sources.

Using self-gathered intelligence, the work on [18] applies a deep learning
model to link exploits from the Dark Web to vulnerabilities in a bidirectional
manner. They include an attention mechanisms to automatically link exploits to
their post date and vulnerability severity. They focus on using this self-gathered
intelligence to assist cybersecurity professionals to prioritisation and risk man-
agement efforts.

In another similar approach, the authors on [13] create their own CTI specifi-
cally for energy systems by analysing metering infrastructures and disseminating
the gathered intelligence through a energy cloud platform. Then, they combine
their internal and external CTI to generate security policies that can control the
behavior of their internal devices, or create rules about device isolation to block
the operation of malicious processes.

The closest method to ours is the service provided by Hybrid Analysis 3

where after executing a malware sample in a sandboxed environment, they gen-
erate a list of processes executions and correlate them with host-based Tactics,
Techniques and Procedures (TTPs). Although they don’t use these to integrate
CTI into detection and response, it follows a similar approach by linking these
two sources.

A considerable amount of the presented works prioritise generating better
formats, analysing existing ones or suggesting new capabilities to sharing plat-
forms in a way to allow the use of CTI together with response mechanisms. A
small number actually tries to use available CTI in a more automated way or
focus on applying it to incident response.

From the discussion above and to the best of our knowledge, there is not any
work that focuses on suggesting a methodology that increases the automation
and the actionability of available CTI on incident response by linking known
attacker behaviour from reports to network incidents.

3 https://www.hybrid-analysis.com/
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3 Methodology

In this section, we describe our solution for adding automation and actionability
to the use of higher level CTI in network intrusion detection and incident re-
sponse. As depicted in Figure 2, we introduce a Pattern Module that will match
network incidents to related higher-level CTI. This directly provides the analyst
with contextual information for matching incidents. Related incidents matching
the same pattern can also be grouped to help further reduce the workload.

Fig. 2. Proposed Solution with a Pattern Creation Engine for Actionable CTI on Net-
work Events

During attack campaigns, network events can have single or multiple oc-
currences of a single type. Thus, combining events and merging recurrent or
redundant ones during visualisation can help to reduce the effort necessary on
analysing similarities between known attacks and situations emerging from ob-
servables.

The information flow of the pattern module detailed in Figure 3 is divided
into four main steps that cover pattern creation and their use. Creation of pat-
terns is triggered by threats and reliable related indicators becoming known.
These indicators can, for example, come directly from sandboxed samples of a
threat or from a TIP where initial related CTI is found. The first step is then
Intelligence Gathering, in which the indicators are matched with available
CTI. Next in the CTI Filtering and Ranking phase low level CTI is filtered
out and just provided to the NIDS for blacklisting as in the currect situation
(Figure 1). High level CTI are ranked based on their usefulness for network in-
trusion detection. All sufficiently high scoring CTI report can be used to build
patterns, but optionally the ranking can be presented to an analyst for man-
ual adjustments and exclusion of certain CTI report. In the following Pattern
Building step, the CTI is matched with TTPs from MITRE ATT&CK and
mapped into network detectable events. We combine these events into a pat-
tern which is stored, including related information, for matching against future
network incidents. Finally in Pattern Matching previously created patterns
are compared with network incidents, and matching ones are enriched with the
information from the pattern.
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Fig. 3. The Information Flow of our Solution

3.1 Intelligence Gathering

To trigger the Intelligence Gathering phase, a number of indicators related to
a known threat are gathered. These indicators are the starting point to define
what CTI identify or characterise the threat, and they will be used to match
with reports that point to it. The relevance of a type of indicator depends on
the threat, e.g. file hashes of payloads or exploit downloader files might be more
useful for identifying reports about an instance of a Ransomware than the IPs
used by it in a specific campaign.

At the time the process is triggered, our data base will have been filled with
reports from CTI feeds, some related to the threat we are currently considering.
With an initial list of indicators related to a threat, we select all CTI reports
in the our database that include at least one of the indicators. If these reports
include additional indicators, we add these to our initial list and iterate this
process until no new reports are added. The outcome of this process is a set of
reports with relevant CTI.

3.2 CTI Filtering and Ranking

We need to find, amongst the Relevant CTI, those reports that are most useful
to then build patterns with in the pattern module. To that end we first filter
reports that only contain low-level CTI. The IoCs included in these reports
are provided to the NIDS (for addition to blacklists as in existing solutions) as
shown in Figure 3. But these reports are not used when building patterns as
they do not include behavioural information. Next, we rank the remaining ones
on their usefulness for attack patterns that are compatible with data coming
from a NIDS. i.e. on the quality of their information regarding attack execution
plans and methods that can help identify an ongoing attack by observing the
network.
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To define the the level of intelligence of a CTI, we refer to the expanded
Detection Maturity Level (DML) Model [19,20] as shown in Figure 4. We define
low-level CTI as those of DML 1 or 2, equivalent to the group of Technical
intelligence, as described by [1]. (CTI with DML 0 is ignored as it is does not
contain relevant information by definition.) Higher-level CTI is defined as those
with DML 3 or higher, which includes Tactical (TTPs), Operational (Goals and
Strategy) and Strategic (Identity) CTI. This separation also matches with the
different perspectives of CTI described by the authors on [12], where IoCs are
artifacts, TTPs describe the attacker behaviour, and the higher levels indicate
the response. For reports, we define the level based on the highest level of CTI
included in the report, so a report is low-level if it only contains low-level CTI
and high-level if it contains at least one high-level CTI.

Fig. 4. Filtering CTI with the Detection Maturity Level Model [20]

Not all high-level information is useful for network based detection. If related
to network detectable events, Tactical (TTPs) CTI might be useful to capture
the attacker’s behaviour detectable by a NIDS. Operational (Goals and Strategy)
and Strategic (Identity) CTI on the other hand can be useful for the analist in
planning a response. We thus needs to find which TTPs are network-mappable,
i.e. related to network detectable events.

As TTPs are typically expressed in term of the MITRE ATT&CK frame-
work [?], we use that framework to find which TTPs are network-mappable, as
described in more detail in Subsection 4.1, assuming that the robustness of that
framework allows an adequate coverage of up-to-date TTPs.

The initial ranking score assigned to reports is how many network-mappable
TTPs they contain. In principle any CTI with a sufficiently high score can be
used to build patterns. However, after the automated ranking, security analysts
can manually check the list of reports related to an attack and adjust the rank
accordingly, thus adapting which reports will be used in the pattern building.
This (optional) review step is included because, as mentioned before, one of the
problems with Open-Source CTI (OSCTI) is the quality of its reports in regards
to coverage and inter-report conciseness [8–11].
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By the end of this step, the output is a ranked list of reports that include
network-mappable CTI which will be used for the creation of the attack patterns.
The next step will be the translation of the CTI into the pattern itself. Note
that the actual scores are only relevant for presentation to and evaluation by the
analyst in the review step. For the Pattern Building, it only matters whether
reports are included or not.

3.3 Pattern Building

With a list of CTI reports ranked, it is possible to start extracting information
from them. Each object type related to attack execution plan and methods in
a report needs a specific mapping to a network event to allow an explainable
result. In order to achieve that, events in the network were ordered in a taxonomy
based on their types. Then, event types were mapped to related TTPs. Patterns
are formed from event types related to the TTPs mentioned in the ranked CTI
reports.

An event type describes the behaviour of an observable possibly related to
a threat. The list of event types used by the NIDS is the result of an aggrega-
tion of many threat data resources, including Industrial Control Systems Cy-
ber Emergency Response Team (ICS-CERT) and NIST National Vulnerability
Database (NVD). Event types are arranged in a taxonomy tree that indicates
first where the event comes from (alerts or logs), then its variations per addi-
tional level, with a short representation by an event type ID. For example, the
event type ID alert ops net unscon is an Unstable Connection network issue that
falls in the operational category of alert events, while alert ops net netmis would
be a Network Misconfiguration in the same category.

Mapping some event types from the NIDS to ATT&CK was done by using
the four lower stages of the framework for adversarial threat hunting described
by the authors on [21]. We aim to link event types to TTPs, which we do by
looking if the type is related to observable which belong to a TTP. Gunter’s
framework gives the notion of observables as being the result of a step in the
attack, and being related to TTPs.

Fig. 5. Gunter’s Framework for Adversarial Threat Hunting with PSExec [21]
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A NIDS could monitor possible sources of observables to detect them as
network events (of a certain type). Figure 5 taken from [21] shows an example
where threat hunting for PSExec (a tool used to run processes remotely using
any user’s credentials) gives related observables and sources that can be linked
to TTPs in the higher stages. As such it provides the information needed to
create the required mapping.

In our scenario, the NIDS itself is the Observable Source, and the types
of events detected by it are the Observables. The TTPs are directly linkable
to ATT&CK. From our analysis, each event type can be mapped to one or
two Techniques on ATT&CK, e.g. a security alert related to FTP CMD buffer
overflow attempt is mappable to both Network Denial Of Service (T1498) and
Exploitation of Remote Services (T1210)4. With the map between events and
techniques, we create a pattern by using the TTPs in a report.

Fig. 6. An Example of a Pattern in JSON Format with Additional Information

Regular expressions stand out as enablers of feature-rich, translatable and
actionable format for representing CTI on incident response. They can describe
patterns of events that can be processed by a Finite State Machine (FSM),
creating automation and actionability.

The part of a pattern used for detection consists of a group of event types.
Additionally we include some meta data with a pattern. As such, a pattern is
defined by its name, an array of its events’ IDs, a regular expression to repre-
sent these events in a computer-readable format and the time window size, and
optional fields such as its severity, a short description, and its category. These
optional fields can be gathered from any relevant CTI, with DML 7 to 9, irrespec-
tive it the report that contains is is ranked for inclusion in the (detection part of
the) pattern or not. The pattern meta data also includes (links to) the reports
with related CTI. Figure 6 shows an example of a pattern in JSON format. The
event IDs are represented in the regex by a letter according to the order that
they appear in the array of event types, i.e the letter a in the example refers to
alert sec event type1.

4 https://attack.mitre.org/techniques/enterprise/
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Any pattern built is added to a database of patterns for use by the Pattern
Matching.

3.4 Pattern Matching

With the database of patterns, we then used them to match sets of events occur-
ring in the network within the specific time window defined in each the pattern.
As shown in Figure 2 for our proposed solution, the NIDS constantly monitors
the network traffic, tries to match events in the network with known threats
and then feeds the incidents to the Pattern Matching Module. The module then
aggregates these events according to their related machine in the network and
tries to match them with its known patterns.

We analyse events as static unordered information over the entire time win-
dow and check for candidate patterns. A pattern can be considered as a candidate
pattern in two situations: When there a multiple event types observed in the net-
work in that pre-defined time window and they have at least two events types
from the pattern, or when there are multiple events observed in the network but
all of them are from the same single type of an event in the pattern.

After getting a list of candidate patterns, we rank them based on their con-
fidence level. Candidates patterns have their confidence level analysed by cal-
culating the Pattern Predominance (P ) in the events observed in the network,
which is the percentage of all events observed (E) that match any event types
(ε) from the pattern, i.e. P = ε/E. A pattern is considered to be matched if
the pattern predominance is higher than a threshold t (P ≥ t) which can be set
according to the needs of the analysts. Any matched pattern is then added to a
list of possible good sources of CTI that can help on responding to that incident,
ranked by their Pattern Predominance.

With this methodology, an analyst or a CSIRT can use the CTI reports re-
lated to the matched patterns in a semi-automated manner for incident response.
Next section evaluates this approach by implementing it and testing the creation
of patterns on sandboxed scenarios.

4 Implementation and Evaluation

This Section details the implementation of the methodology described in Sec-
tion 3, with explanations about the experimental setup and results obtained.

4.1 Implementation

We detail below the formats and TIPs chosen as source for information, as well
as the thresholds set for minimum compatibility of patterns.
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Intelligence Gathering

TIP. Several public CTI feeds are available, like AlienVault, VirusTotal, Mal-
ware Traffic Analysis and Hybrid Analysis. There are also open-source platforms,
such as MISP and OpenCTI for implementing a TIP and optionally offering its
own combined info as a new feed. We run an OpenCTI instance to collect CTI
reports from the four feeds mentioned above. We select OpenCTI as it has a
slight focus on more contextualised information for indicators and is capable of
linking them to related threats and also to their to primary source (a report, a
MISP event, etc). OpenCTI is also able to consume MISP generated feeds.

Internal CTI format. In our implementation, we use reports in the Structured
Threat Information Expression (STIX) 2.1 format for its versatility in exchang-
ing CTI and also because it is a widely adopted standard. In STIX we represent
CTI as structured objects called STIX Domain Object (SDO)s and reports as
containers called STIX Bundles.

Intel matching. We match which reports (expressed as STIX bundles) include
given threat indicators (also expressed in STIX) to get all the SDOs related to
those samples.

Pattern Building

TTP Match. In this step, information about the TTPs is requested using MITRE’s
API and then added to the report. This is done for all network-mappable TTPs.

Mapping Events to TTPs. The NIDS can only operate network-based events,
which makes it compatible with only a subset of MITRE ATT&CK. We use
MITRE’s diagram of techniques and their linked data sources [22] to filter the
interesting ones for a NIDS. A total of 1.267 event types from the NIDS we
use were mapped to network mappable techniques from both MITRE ICS and
Enterprise. For each event type, only a single TTP or the two most relevant ones
were assigned. As a result, only some of the mappable TTPs have related event
types. Figure 7 shows a list of network mappable MITRE techniques from their
Enterprise framework and a highlight for the ones mapped.

Pattern Matching Module

Pattern Matching. The threshold for pattern predominance, used to determine
pattern compatibility in pattern matching (see Subsection 3.4), is set to 0.5 based
our empirical experimentation. Thus patterns with at least 50% of predominance
(P ≥ 0.5) are considered as being matched during the pattern analysis. Note
that low-confidence approximates, i.e. candidate patterns with low predominance
(P < 0.5), can be suggested for analysts if needed (clearly marked with as being
low-confidence).
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Fig. 7. Network Detectable Techniques from MITRE with the Ones Used in Blue

4.2 Experimental Setup

Dataset. For our experiments, we use a dataset consisting of 27 sand-boxed
samples of ransomware from 4 different families: Cerber, Crysis, REvil/Sodinok-
ibi and WannaCry [23], with a total of 78.5 GB in PCAPs. Each sample refers to
an instance of a ransomware from one of the families. These PCAPS represent
the network traffic and the I/O operations executed by these malwares while
encrypting a network shared directory.

The use of these samples was decided upon based on some factors: Malwares
and more specifically ransonwares are a growing threat industry-wide, an open
dataset with good availability and adoption helps the reproductibility of the
experiments, malware families with a considerable number of samples will allow
a proper validation, availability of OSCTI data related to these samples allows
the creation of the patterns.

Evaluation Metrics In the tests, we want to verify if a pattern made out of
a CTI report is strong enough to define and match a sample from a malware
family rather than a single instance, and if it is unique enough to differentiate
malware families. To evaluate the suitability of our methodology, we then want
to check if the patterns: (1) Match same-family samples with a high score. (2)
Do not match different families or match with a low enough score.

Mapping Malwares to Patterns. We divide our malware families in two
groups: One is the group of sample with indicators that point to reports with
higher level of CTI available, which will be then used to generate the initial
patterns. Based on observations about the available CTI related to them, we
selected Cerber and Sodinokibi/REvil as the sources for the attack patterns as
part of the first group. And the second group consists of all samples that will be
used for the validation, including the ones used to create the patterns themselves.
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Fig. 8. Mapping Cerber Samples to Related High Level Network-Detectable CTI

Figure 8 shows the process of mapping the samples from Cerber to related
CTI and extracting network mappable TTPs from them. Sodinokibi/REvil fol-
lowed a similar flow. To create actionable information out of reports related to
these malwares, we use as an starting point a list of hashes related to the mal-
ware payloads from each sample. It is possible to match which reports as STIX
bundles include these payloads to get the SDOs related to those samples. These
reports are then filtered based on the level of CTI they have, and then ranked
based on two scores: The percentage of related payload hashes they include from
that initial list, and the amount of contextual CTI on these reports. In the case
of similar reports, they can be grouped based on their related SDOs

In our case, we decided to use the hashes from the samples themselves as the
starting point to search for related CTI in a way of validating if the patterns
can detect related samples, but as stated before, there is also the possibility of
extracting this information from other sources, such as the reports themselves.

Fig. 9. Final Patterns Generated for Cerber and REvil

Using the first group, we generated patterns for the malware families and
then added them to our database. Figure 9 shows the resulting patterns. We
replay the samples from that malware family in a network monitored by the
NIDS, which sends the events to the pattern module for scoring and validation.
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After that, we run the same experiment again using the samples from all other
families as a validation step. Next section shows the results of our experiments.

4.3 Results

Out of the eleven samples from Cerber instances, all of them matched with
the pattern, we define eight of them as high confidence matches, because they
have at least two events types matching and t ≥ 0.5, and the remaining two
as medium confidence because there is only one event type match, but t = 1.
At the same time, there has been no match with other malware samples. One
sample, REvil-2021-May-04, did not have any anomalous events detected by our
NIDS, and by consequence it did not appear as anomalous on our observations.
We ran our tests using the patterns presented and analysed the results from the
main experiment described on Subsection 4.2. Figure 10 shows the results using
the pattern generated for Cerber.

Fig. 10. Final Results for Detection with Cerber

Figure 11 shows the results of the experiment now using the pattern gener-
ated for REvil. With the exception of the same sample as mentioned above, all
the others matched the pattern created with high confidence. As mentioned be-
fore, the sample that did not match was not detected as anomalous. This may be
due to the map presented on Figure 7 not being broad enough to include events
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related to its incidents. In this test, there has been also one erroneous match
with a sample from the WannaCry ransomware family. All the other sample did
not match with the REvil pattern.

Fig. 11. Final Results for detection on REvil

The detection achieved a False Negative Rate of 5.88% when considering the
REvil sample with no events detected as incidents by the NIDS. At the same
time, the detection achieved a False Positive Rate of 2.77%. The results give a
Detection Rate of 94.11% with an accuracy of 96.22%.

5 Conclusion

The work proposed in this paper aims to increase the actionability of using
CTI on incident response. Our methodology helps to define a structured way of
consuming available CTI by linking them to known threats and their expected
behaviour. It enables the use of the gathered intelligence by matching its attack
patterns with network events related to incidents.

The test scenarios showed that by using this approach, it is possible to cor-
relate intelligence about known threats with a good precision by using the map
between the behavioural CTI and the incidents by using their event type. For
future work, we plan to use our methodology to generate CTI reports out of the
network incidents and to create an advanced version of our patterns that include
event chains.
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