A Framework and Risk Assessment Approaches for
Risk-based Access Control in the Cloud

Daniel Ricardo dos Santos®*, Roberto Marinho?®, Gustavo Roecker Schmitt?,
Carla Merkle Westphall®, Carlos Becker Westphall®

¢ Networks and Management Laboratory

Department of Informatics and Statistics
Federal University of Santa Catarina

88040-970 - Floriandpolis - SC - Brazil

Abstract

Cloud computing is advantageous for customers and service providers. However,
it has specific security requirements that are not captured by traditional access
control models, e.g., secure information sharing in dynamic and collaborative
environments. Risk-based access control models try to overcome these limita-
tions, but while there are well-known enforcement mechanisms for traditional
access control, this is not the case for risk-based policies. In this paper, we
motivate the use of risk-based access control in the cloud and present a frame-
work for enforcing risk-based policies that is based on an extension of XACML.
We also instantiate this framework using a new ontology-based risk assessment
approach, as well as other models from related work, and present experimental
results of the implementation of our work.

Keywords: access control, cloud computing, risk

1. Introduction

Cloud computing enables the delivery of computational resources and ser-
vices through the Internet, providing easy access, elasticity and resource shar-
ing [1]. The cloud model is widely adopted because of its economical and per-
formance advantages for customers and service providers. However, the growing
number of users and available resources, as well as the diversity of supported
applications, emphasize the security challenges of this model [2].

Access control is crucial to ensure the correct enforcement of security policies
on the cloud. There are well-known solutions to enforce policies based on tra-
ditional access control models, such as the eXtensible Access Control Markup
Language (XACML) [3]. Nonetheless, the emergence of new requirements in
access control, derived from current information security needs and the needs

*Corresponding author
Email address: danielrs@inf.ufsc.br (Daniel Ricardo dos Santos)

Preprint submitted to Journal of Network and Computer Applications July 11, 2016

20

25

30

35

40

45

50

of highly dynamic environments, has led to the development of access control
models based on risk assessment [4], for which clear enforcement mechanisms
are not readily available. One of the main advantages of risk-based access con-
trol models is the ability to handle exceptional access requests, when a user
must be granted access to perform a critical action, even though he or she
may not be previously authorized to do so. Another issue solved by this kind of
access control model is flexibility in accessing resources. Traditional models em-
ploy rigid and static access control policies that are not well suited to dynamic
and heterogeneous environments like the cloud [5l 6], since those environments
present a continuous change in the available users and resources and greater
administrative complexity.

This paper presents a framework for dynamic risk-based access control for
cloud computing. The system manages user access to cloud resources by quan-
tifying and aggregating risk metrics defined in risk policies created by resource
owners. The risk-based model is built on top of XACML and allows the use
of, e.g., Role-based Access Control (RBAC) or Attribute-based Access Control
(ABAC) coupled with risk analysis. This combination provides flexible access
control for both users and Cloud Service Providers (CSPs).

We also present instantiations of our framework using diverse risk-based
models. One instantiation is based on ontologies, which provides a formal model
for the inference of contextual information in risk analysis. The use of ontologies
for access control models to provide flexibility and dynamism in decision making
has been exploited in some works [7, [§]. However, the use of ontologies in the
context of dynamic risk assessment is a novel contribution.

This paper is the consolidation of some of our previously published research
in risk-based access control for cloud computing [5 @, [T0] with the addition of
new material and results related to instantiations of our framework. Section 2]
introduces the main concepts related to cloud computing and access control.
Section [3| presents our main contribution, the development of an extensible
framework for risk assessment approaches for access control in cloud computing.
Sections [4] and [f] present other contributions, namely the instantiation of the
framework with risk-based models and the development of an ontology-based
risk quantification approach for such models. Section [f] presents the use of the
framework in the emerging scenario of cloud federations. Section [7] describes
our implementation and experimental results. Section [§] discusses related work
and Section [0 concludes the paper.

2. Background

Cloud computing allows access to a shared pool of configurable computing
resources with five essential characteristics: on-demand self-service, broad net-
work access, resource pooling, rapid elasticity and measured service [I]. Despite
the advantages of clouds, security is the main fear of potential users, especially
in public deployments [2].

55

60

65

70

75

80

85

2.1. Risk-based Access Control

Access control ensures that access requests from users to objects are val-
idated according to predefined rules [T1I]. These rules form an authorization
policy and the way of defining and enforcing them constitutes an access con-
trol model. Traditional access control models are Discretionary Access Con-
trol (DAC), where the owner of a resource decides who can access it and how;
Mandatory Access Control (MAC), where the policy is defined by the system;
and RBAC, where subjects are grouped in roles to which permissions are as-
signed. DAC and RBAC are still the most widely used, however new system
architectures and requirements have led to the development of models such as
ABAC [12] and risk-based access control.

Attacks such as unauthorized disclosure of information, denial of service and
information tampering are still critical. However, new kinds of systems, e.g.,
the Internet of Things (IoT), grids, and clouds, characterized by distribution,
automatic reconfiguration and dynamicity of users and resources, present new
challenges to access control models [13, [I4] [I5]. Three main problems with
traditional access controls have been identified in the literature [16]:

e they are too rigid to handle exceptional situations in which the policy

itself should be overridden in order not to stop the system;

e they do not meet the requirements of dynamic secure information and

permission sharing in collaborative environments; and,

e they are not flexible enough to handle the changing behavior of users.

Risk-based access control is still in an initial phase of adoption, mostly in aca-
demic or experimental settings, but there is a growing need to define formal
models and standard enforcement mechanisms for it. The idea behind risk-
based access control is that each request must be analyzed dynamically, taking
into account not only predefined policies but also contextual information such
as operational risk, user need, and the benefit of an action [I'7, 18] [19] 20]. In
real applications, many unexpected situations require policy violations, which
may occur because policies are incomplete or conflicting. Two recurring exam-
ples for policy overriding are medical and military environments where, e.g., a
nurse or a soldier must obtain restricted information to save a patient’s life or to
complete a mission. Policy overriding in these situations is known as “break the
glass” and it prevents system stagnation [21]. Using a risk-based access control
model, these requests may be exceptionally granted if the risk is acceptable.
Risk-based access control models are characterized by the use of a function
that attributes a risk value to each request, and this function is the main differ-
ence between models. Risk estimation, taking as input several factors, is used
to determine whether an access request should be granted or denied. The out-
put of such a function is based on a risk threshold, and access is granted if the
quantified risk for the access request is below this threshold, as in formula :

1 if risk(s, 0, a, ¢) < riskThreshold
0 otherwise

(1)

canAccess(s, 0, a,c) = {

90

95

100

105

110

115

120

125

130

where s is a subject, o is an object, a is an action, and ¢ represents contextual
information. risk(s, o, a, ¢) represents the risk of the subject performing the
action on the object, given a context. A result of 1 represents granted access,
whereas a result of 0 represents denied access. The dynamic nature of access
control is captured in these models because access decisions vary according to
the contextual information available at the time of request. Granting an access
request may entail some form of monitoring after the decision, such as auditing,
the fulfillment of obligations [22] (post-conditions that must hold for a user to
keep access) or a reputation system [23].

The Risk-Adaptive Access Control (RAJAC) model [24] proposes the use of
risk-based access control for military applications. The original work does not
go into details about risk estimation, but it uses the concepts of operational
need and security risk, with access being granted when the need is greater than
the risk. Britton and Brown [25] present a quantification method for RAdAC
based on expert opinion, wherein a list of risk factors is compiled and a value is
attributed to each factor. Afterwards, weights are attributed to each value and
the final result is the combination of all the factors and their weights.

There are several other risk-based models. Cheng et al. [26] and Ni et al. [27]
propose the use of fuzzy logic to quantify risk, whereas Molloy et al. [28] suggest
the use of classifiers trained with the history of access decisions. Shaikh et al. [23]
show two methods considering the history of users and Wang and Jin [29] show
an application for privacy-preserving health care systems. The biggest challenge
for risk quantification is the uncertainty of information. Many works present
ways of bypassing this uncertainty, using techniques based on, e.g., probabilistic
inference, machine learning and decision theory. This suggests that there are
many ways of approaching the issue, each with its advantages and disadvantages.

2.2. eXtensible Access Control Markup Language (XACML)

With the increasing complexity of access control systems, it is necessary
to define reference architectures for authorization protocols, especially for dis-
tributed systems. XACML is a language for general purpose access control that
supports policies, access requests, and responses in XML [3]. The standard is
used in several industrial and academic applications and defines an architecture
with the following components:

Policy Administration Point (PAP): retrieves policies that will be used by
the PDP;

Policy Information Point (PIP): retrieves information that will be
matched against the policy to reach the access decision;

Policy Decision Point (PDP): reaches an access decision, based on the re-
trieved information and policies; and

Policy Enforcement Point (PEP): the point of access of the user to the
system, which protects a sensitive resource, receives access requests and
sends them to the PDP.

The root of an XACML document is a Policy or a PolicySet, which can con-
tain other policies or policy sets. A policy is expressed with a set of Rules, which

135

140

145

150

155

160

165

are evaluated individually. The result of each evaluation by the PDP can be
Permit, Deny, Indeterminate—when there is an error or a missing attribute—
or NotApplicable—when the request cannot be processed by the system. Since
a policy set can contain multiple policies, a policy can contain multiple rules
and all can have different access decisions, there exist combination algorithms
to group decisions and reach a final result.

2.3. Ontologies

An ontology is a machine readable specification of concepts, relations, func-
tions, and properties of an abstract model of a real world phenomenon [30].
Ontologies are used to share and reason about information of a particular do-
main. The Resource Description Framework (RDF) provides a data model for
semantic web annotations in the form of triples written as (Subject, Property,
Object). The RDF Schema (RDFS) allows the expression of simple ontologies
and the Web Ontology Language (OWL) can be used to represent knowledge
about objects, groups of objects, and complex relations. Ontology languages
allow users to write formal conceptualizations that must be syntactically and
semantically well defined. They have high expressiveness and support for effi-
cient inference. OWL is built on top of RDF and RDFS, with the same kind of
syntax, whereas formal semantics and inference support are provided by map-
ping the ontology to a known logic formalism. OWL uses description logics
and reasoners such as FACT, HERMIT and RACER [31]. SPARQL is a query
language for RDF files based on pattern matching.

3. A Framework for Risk-Based Access Control in the Cloud

As discussed in Sections [I] and [2| there are standard definitions and autho-
rization frameworks for traditional access control models, XACML being one of
the most successful. On the other hand, there is a myriad of risk-based access
control models employing different quantification and aggregation methods and
no common enforcement approach capable of supporting several models.

In this Section, we present a framework based on the quantification and ag-
gregation of risk metrics. Metrics are defined in risk policies, giving resource
owners and cloud service providers greater control over the flexibility of autho-
rization. Our framework is an extension of XACML and combines XACML
policy evaluation with risk-based access control.

8.1. Definitions and Architecture

A risk metric (r € R) is a real value representing the risk associated to a
certain characteristic of the system, user, resource, context or others. A risk
policy RP = {quantifyRisk;, ..., quantifyRisk, , aggregateRisk, risk Threshold} is
a set containing a finite number n of quantification functions gquantifyRisk;,
which take as input an access request (i.e. a subject s, an object o, an action
a and a context ¢) and output a risk metric; one risk aggregation function
aggregateRisk, which takes as input n real numbers and outputs another real

170

175

180

185

190

195

number representing total risk; and the maximum risk accepted by the system
riskThreshold € R. The access decision function in the framework is

1 if combinePolicies(canAccessRisk(s, o, a, ¢),
canAccess(s, 0, a,c) = canAccessXACML(s,0,a)) =1
0 otherwise

where canAccessXACML applies the usual XACML policy evaluation, and
canAccessRisk is a modified version of taking into account risk metrics:

1 if aggregatedRisk(s, o, a, ¢) < riskThreshold

canAccessRisk(s,0,a,c) = { 0 otherwise

where aggregatedRisk is the application of the aggregation function to the risk
metrics obtained by the quantification functions:

aggregatedRisk(s, o, a, ¢) = aggregateRisk(quantifyRisk; (s, 0, a,c), ...,
quantifyRisk, (s, o, a, ¢))

The policy combining function combinePolicies takes the results of
canAccessRisk and canAccessXACML and returns a single value. As before,
a value of 1 indicates a granted request and a value of 0 a denied request. An
example of a simple quantification function is a method that returns 0 for an
HTTPS request and 1 otherwise. Some aggregation functions are minimum
value, maximum value, average value, and the fuzzy method [32].
In practice, when the PDP receives an access request, it can perform two
actions in parallel. On the one hand the XACML access control decision is taken
based on the XACML policies related to the resource and on the other hand
the PDP and a new component called Risk Engine perform a risk analysis of
the access request, based on risk policies. Quantification functions can be either
local, implemented directly in the Risk Engine, or remote, implemented by the
user as a web service that is invoked during policy evaluation. Figure [1| shows
an overview of the proposed framework. In the Figure, rounded rectangles (plus
the circle and the cloud) represent the components of the system and arrows
represent the communication between them. Components in purple belong to
the XACML standard, whereas the following components (in green) are contri-
butions of this paper. Details about the communication between components
are described in Section [3.3
Risk Engine: invoked by the PDP to process risk-based access control. It
is responsible for analyzing and processing the risk policies associated to
a resource and for invoking the quantification and aggregation functions
described in each policy. The Risk Engine is different for each CSP be-
cause it implements locally the quantification functions available in that
provider. If the user wants to use other functions, their implementation
can be provided as a web service whose URL is informed in the risk policy;

Risk Quantification Functions: local functions that implement quantifica-
tion for risk metrics. They are implemented inside the Risk Engine and
are available to be used in the risk policies;

200

205

210

215

220

225

request
q request

Policy Enforcement Policy Decision Point Risk Engine risk value

response

risk value

Risk Quantification
Web Service

XACML components Risk-based components

Risk
Quantification
Function

I Policy Information

Risk Policies

Figure 1: Overview of the architecture

Risk Quantification Web Services: web services responsible for quantify-
ing the risk of each access request. They are implemented by users ac-
cording to the specifications of the CSP. Each web service takes as input
an access request forwarded by the risk engine and returns a numeric value
that represents the quantification of the risk metric; and,

Risk Policies: policies that define how risk-based access control is evaluated
for each resource.

The evaluation of risk policies has the same possible results as an XACML
policy evaluation (Permit, Deny, NotApplicable and Indeterminate). After eval-
uating the policies, the PDP has two access decisions, one based on XACML
and one based on risk. These decisions may be incompatible, so it is necessary
to combine them in a final result using one of the following policy combining
functions.

Deny Overrides: if any policy evaluates to Deny, the end result is Deny;
Permit Overrides: if any policy evaluates to Permit, the end result is Permit;
XACML Precedence: the end result is the same as the XACML policy; and,
Risk Precedence: the end result is the same as the risk policy.

3.2. Risk Policies

A risk policy is implemented as an XML file that describes to the CSP how
to evaluate risk-based access control for a resource. This file is created by the
resource owner and stored in the CSP. Each policy is composed of the identifi-
cation of the associated resource, identification of the resource owner, a set of
risk metrics with descriptions and quantification functions, a risk aggregation
function and a risk threshold.

Both the CSP and the owner of the resource must opt in to have a resource
accessed via a risk policy. Besides the risk policies defined by the owner, the
CSP must also provide a basic risk policy that contains minimum metrics and
a minimum risk threshold. The basic risk policy of each CSP is evaluated in
every access request before the specific policies of each resource. If the basic

230

235

240

245

250

255

260

265

270

275

policy is violated, the specific policies are not even processed. Basic policies are
an important tool to keep the minimum security requirements of a CSP, at the
same time allowing access control flexibility.

Risk policies support the use of different risk metrics and aggregation meth-
ods in the same system. Risk policies follow an XML schema with a root ele-
ment risk-policy and the child elements resource, user, metric-set, aggregation-
function, and risk-threshold. A risk-policy informs the version being used, while
resource and user have id attributes identifying the associated resource and
the policy creator, respectively. aggregation-function identifies the aggregation
method being used and risk-threshold represents the maximum risk accepted
by the system. Inside a metric-set, there are metric elements, i.e. risk metric
definitions, and inside these the elements name, description and quantification,
which can be a local function or a remote web service. Listing [I| shows a simple
risk policy.

Listing 1: Example of a simple risk policy

<risk-policy version="1.0"
xmlns:rp="http://inf.ufsc.br/ " danielrs/risk-policy">
<rp:resource id="0"/>
<rp:user id="0"/>
<rp:metric-set name="NAME">
<rp:metric>
<rp:name>NAME</rp:name>
<rp:description>DESCRIPTION</rp:description>
<rp:quantification>QUANTIFICATION</rp:quantification>
</rp:metric>
</rp:metric-set>
<rp:aggregation-function>ABC</rp:aggregation-function>
<rp:risk-threshold>99</rp:risk-threshold>
</rp:risk-policy>

3.8. Decision Process

Figure |2 presents the access control decision process step by step. Again,
purple elements represent XACML components, whereas green indicates com-
ponents added by our framework. First, a subject issues a request to access a
cloud resource (step 1), then the PEP receives this request and forwards it to
the PDP (step 2), which loads the XACML and risk policies associated to the
resource in the PAP (steps 3 and 4). At this point, the two access decisions hap-
pen in parallel. For XACML, the PDP loads the attributes from the PIP (steps
5 and 6) and performs the traditional access decision. For the risk decision, the
PDP checks if the resource can be accessed this way, which is indicated by the
presence of an associated risk policy. If such a policy does not exist, the result
is NotApplicable. If it exists, the PDP forwards the request to the Risk Engine,
which first checks the basic risk policy. If the basic policy evaluates to Permit,
the Risk Engine performs the risk analysis described in the policy (steps 6 and
7). Steps 6¢ and 7c show a local risk quantification and steps 6b and 7b show
the remote version (both versions can be invoked in the same policy). The risk
metrics are then aggregated in a single value and the Risk Engine returns a
response to the PDP. The PDP, based on the decisions of the XACML policy
and the risk policy, as well as the combination algorithm, decides whether to

280

285

290

-

1. Access request

v

Policy Enforcement

10. Obligations Obligation Service
Risk Quantification
Web Service

2. Request 9. Response 6b. Request (remote)
v | e
7b. Risk value
——— 5b. Request—p> V'

Policy Decision Point

8b. Risk-based Risk Engine
decision
6c. Request
3. Policy

4. Policy 5a. Attribute 6a. Altributes 7c. Risk value

;quest / request\‘ \
Policy Administration Policy Information

Figure 2: Decision process

Risk
Quantification
Function
(local)

grant or deny the request and returns a decision to the PEP (step 9), which is
then responsible for enforcing obligations (step 10).

4. Instantiating the framework

An instantiation of the framework is characterized by defining the elements of
a risk policy, namely metrics, quantification functions, an aggregation function
and a risk threshold. In this Section, we instantiate the framework presented
in the previous Section with three risk-based models: the one presented by
Sharma et al. [33], the RAJAC model as described by Britton and Brown [25]
and a custom model that combines characteristics from both. For each model
we present the risk metrics, a few examples of quantification functions, and
an aggregation function. Risk thresholds are system-specific, and therefore not
shown, but the threshold should always be a value in the interval of possible
values returned by the quantification function that represents how risk-averse
is the system.

4.1. Confidentiality, Integrity, and Availability

The model of Sharma et al. [33] is based on the impact of a requested action
on Confidentiality, Integrity, and Availability (CTA) and a past risk score added
to the current value to keep track of user behavior. Table[I] presents the impact
of actions on different kinds of data (where 1 means the action has an impact
on the considered attribute and 0 otherwise). To instantiate this model, we
need four risk metrics, Confidentiality (C'), Integrity (I), Availability (A), and

295

300

305

310

History (H), and therefore four quantification functions, such as the following
for the C, 1, A metrics (based on Table :

P 1 ifa= View Ao & SENSITIVE
quantifyRiskc (s, 0, a, ¢) = 0 otherwise

0 if a = View

quantifyRisky (s, 0, a, c) = { 1 otherwise

P 0 ifa= ViewAoe€ SENSITIVE
quantifyRiska(s, o, a, c) = { 1 otherwise

The H metric is quantified by reading the previous risk value from a database
and the final risk score is calculated based on the following formula:

aggregatedRisk = (C-P)+ (I -P)+ (A-P))+ H

where C, I, A is the impact of an action on confidentiality, integrity, and avail-
ability, respectively, as returned by the quantifyRisk functions above; H is the
past risk value; and P is the probability of occurrence of the action (which
should be known by the system).

An example of access request and decision using this model is when a user
u, with a past risk score of 0.3, requests to View a Sensitive information (C =
1,I = A = 0, according to Table , in a system where the probability of this
action is 0.5. The aggregatedRisk in this case is

aggregatedRisk = ((1-0.5) + (0-0.5) +(0-0.5)) + 0.3 = 0.8 (2)
and access will be granted if the riskThreshold is greater than 0.8.

4.2. RAdAC

Britton and Brown [25] present a quantification method for the RAdAC
model based on 27 risk factors divided in 6 groups, to which weights are at-
tributed (shown in Table . We directly map each risk factor to a metric with
the same name.

Group 1 (Characteristics of the Requester) represents risks associated with
the person or application requesting access to a resource. Group 1 contains met-
rics such as the role of the requester in the system, its rank in the organization,

Table 1: Risk values from [33]

Modify | Sensitive / Non-sensitive
Delete | Sensitive / Non-sensitive

’ Action \ Data Sensitivity \ C \ I \ A ‘
Create | Sensitive / Non-sensitive | 0 | 1 | 1
View Sensitive 117010
View Non-sensitive 0101

0|11
0|11

10

315

320

325

330

335

340

its clearance level, its access level, possible previous violations, and education
level. Group 2 (Characteristics of IT Components) is related to the risks associ-
ated with components in the path between requester and resource, such as the
type of machines, applications, network, connections and authentication used.
Group 3 (Situational Factors) are risks associated with the situation surround-
ing the request, such as the role of the requester in a specific mission and the
time sensitivity of the requested resource. Group 4 (Environmental Factors)
contains risks associated with the environment surrounding the request, such as
the physical location of the requester. Group 5 (Characteristics of the Informa-
tion Requested) are risks associated to the resource itself, such as classification
level, permission level and encryption level. Group 6 (Heuristics) represents
the risk associated to previous similar requests, such as known violations (risk
knowledge) and successful transactions (trust level). Each group has a total
weight of 16.6 (100/6), and each metric in a group has a weight of 16.6/n,
where n is the number of items in that group. Some metrics (e.g., threat level)
are tailored for military applications, which is the original intended domain of
the model. Details about all the metrics can be found in [25].

To instantiate this model, we use 27 quantification functions, such as the
following, for the Role metric (the first metric in Table [2):

1 if s € SuperAdmin
5 if s € Admin (3)
10 if s € User
15 otherwise

quantifyRiskroi.(s, 0, a, c) =

The final risk score is given by the formula:

27
aggregatedRisk = Z w; Ty (4)
i=1
where w; is the weight attributed to metric ¢ and r; is its risk value. The original
work does not go into details on how to obtain the risk values for each factor.
The values presented in are just an example and different systems can adopt
different values.
An illustrative example of access request and decision using this model is a
request where all the quantifyRisk functions return a value of 5 for the metrics.
The aggregatedRisk is

aggregatedRisk = (2.7-6-5)+ (2.3-7-5)+ (3.3-5-5) +
(83-2-5)4+(3.3-5-5)+(8.3-2-5) =492.5 (5)
where the terms in parentheses represent each group (e.g., group 1 has 6 metrics

with weight 2.7 and the value of each is 5). Access will be granted if the
riskThreshold is greater than 492.5.

4.8. Custom model
To further demonstrate the applicability of the framework and to combine
interesting features from different models, we developed a custom model mixing

11

345

350

Table 2: Risk factors and associated weights— from [25]

l Risk factor Weight H Risk factor ‘ Weight
Charact. of Requester 16.6 Situational Factors 16.6
Role 2.7 Specific Mission Role 3.3
Rank 2.7 Time Sensitivity of Inf. 3.3
Clearance Level 2.7 Transaction Type 3.3
Access Level 2.7 Auditable 3.3
Previous Violations 2.7 Audience Size 3.3
Education Level 2.7
Charact. of IT Comp. 16.6 Charact. of Inf. Req. 16.6
Machine Type 2.3 Classification Level 3.3
Application 2.3 Encryption Level 3.3
Connection Type 2.3 Network Classif. Level 3.3
Authentication Type 2.3 Permission Level 3.3
Network 2.3 Perishable 3.3
QoP/Encryption Level 2.3
Distance 2.3
Heuristics 16.6 Environmental Factors 16.6
Risk Knowledge 8.3 Current Location 8.3
Trust Level 8.3 Op. Env. Threat Level 8.3

the 27 contextual metrics of [25], the 3 CIA metrics of [34] (which are the same

as in [33]) and the historical metric of [33]. Therefore, we have 31 metrics,

divided in three categories.

Context: metrics from [25], which include characteristics of the subjects,
IT components, objects, environmental factors, situational factors, and
heuristics;

Security characteristics of actions: confidentiality, integrity and availabil-
ity impact of actions on the resource;

Subject history: a metric related to the history of actions of the user.

To estimate the risks involving confidentiality, integrity, and availability, we
use the functions from [34], where the risk is based on the impact that an access
can cause, which can be low (1-5), medium (6-10) or high (11-15). We use the
same scale for the risk metrics that compose the contextual risk, such as the
following function for the MachineType metric:

1 if ¢[machineType] = Server

o _} 5 if ¢[machineType] = Desktop
quantifyRiskiachineype (5, 0,0, ¢) = 10 if c¢[machineType] = Mobile
15 otherwise

The total risk is given by the formula:

aggregatedRisk = (w; - contextRisk) + (wg - ciaRisk) 4+ (ws - histRisk) (6)

12

355

360

365

370

375

380

385

where contextRisk is obtained by applying (14)),
ciaRisk =) . (C.1,A} quantifyRisk,, histRisk is read from the database,
and wy, wq, w3 are weights attributed to each category of metrics.

Besides showing the expressiveness of our framework, this model is interest-
ing because it combines metrics separately mentioned in several related works.
It also illustrates the difficulty of having a single set of metrics that is applicable
in several systems and how important it is to have an enforcement mechanism
that accepts a varying set of metrics, so that system administrators can define
their policies according to their own applications. It is easy to imagine sev-
eral custom models that can be described simply by adding or removing a new
category with its own set of metrics. It is also easy to see that these can be
implemented in our framework by defining appropriate functions and policies.

An example of access request and decision using this model is the same
request from formula (2)), in the context given in formula (5), in a system where
wy = 0.2, we = 0.7, and w3 = 0.1. The resulting risk is

aggregatedRisk = (0.2 - 492.5) 4+ (0.7 - 0.5) + (0.1 - 0.3) = 98.88

and access will be granted if the riskThreshold is greater than 98.88.

5. An Ontology-based Approach to Risk Calculation for the RAdAC
Model

One of the biggest challenges in using RAdAC is finding a good risk es-
timation method. The method of [25] is a possibility, but the availability of
contextual information to evaluate risk metrics is a major issue for risk quan-
tification, since if some information is absent a final value cannot be achieved.

Our ontology-based approach tries to solve this problem by adjusting the
weights of each metric as they become available. Hence, at run-time, if there
are few metrics available, they will have a greater weight and vice-versa. Fur-
thermore, using the inference capabilities of ontology languages and reasoners,
it tries to dynamically infer missing contextual information (in the form of at-
tributes used in the metrics) that can be derived from available data.

5.1. Ontology definition

We use OWL-DL to construct ontologies. Relations between risk attributes
can be defined using detailed knowledge about the architecture and behavior
of a system and then used for automated inference. For instance, in a context
composed of the metrics ConnectionType, Role, MachineType, and Application,
taken from [25], the Role attribute can be obtained from the knowledge of other
attributes. By knowing that the connection used is Wired, it is possible to look
for machine types that use this type of connection and from the type of machine
found it is possible to look for roles that use this type of machine. This example
is formalized in the following formula:

ConnectionType(?d) N Machine Type(?m) A canBeUsedBy(?d, ?m)
AusesMachine Type(?r,?m) — Role(?r)

13

390

395

400

405

410

Table 3: Relation properties

l 7# [RiskFactor: Attribute [RelationProperty [RiskFactor:Attribute
1 | ConnectionType:Wired | canBeUsedBy MachineType:Desktop
2 | Role:Admin usesMachineType MachineType:Desktop
3 | MachineType:PDA usesConnectionType | ConnectionType:Wireless
4 | Role:TeamLeader hasMinEducLevel EducationLevel:Specialist
5 | Role:TeamLeader hasMinimumRank Rank:E1
6 | Application:Browser usesEncryptionLevel | EncryptionLevel:SSL
7 | TransactionType:Query | usesApplication Application:Database
8 | clearanceLevel:Secret hasMinimumRole Role:TeamLeader
9 | RiskKnowledge:None hasTrustLevel TrustLevel:LowTrustLevel
10 | CurrentLoc:Unknown hasOpThreatLevel OpThreatLevel:Severe
11 | ClassifLevel: TopSecret hasEncryptionLevel | EncryptionLevel:PKI

where d represents the type of connection being used, m represents the type
of machine, and r represents the role of the requester. In this example, if the
machine type is Desktop and the connection type is Wired, the role can be
inferred as Admin (according to the example relations in Table [3)).

In each row of Table [3] the first column represents a risk metric taken from
Table [2[and associated to a possible attribute, such as connection type associ-
ated to wired (ConnectionType:Wired) in row 1. The third column represents
another risk metric with another possible value, such as machine type associ-
ated to desktop (MachineType:Desktop) in row 1. The second column names a
relation between an element in the first column and an element in the third col-
umn. The relation “canBeUsedBy” in row 1 formalizes that wired connections
are used by desktop machines in the model. The relation “usesApplication” in
row 7 formalizes that transactions of the type query use applications of type
database. These relations are examples based on the metrics from [25] and
an illustrative system. Other relations can be defined accordingly for different
metrics and systems.

It is possible to write an OWL ontology mapping all risk metrics from a
risk-based model to classes and sub-classes. In the case of [25], the result is an
ontology with 27 classes and predefined weights associated to each class. To rep-
resent the risk weights as properties of the classes, the punning technique can be
used, wherein objects are modeled both as classes and as instances, so that they
can be validated according to the context in which they are used. In our exam-
ple, all risk metrics are present also as instances, therefore classes and instances
are denoted by the same URI. For instance, the URI http://semanticweb.org/
marinho/ontologies/2014/risk-ontology#machineType represents both the
machineType class and the machine Type instance that has a weight data prop-
erty. Another important modeling step is identifying synonyms of instances.
For instance, the SSL attribute and the Secure Socket Layer attribute can be
tied together by using the owl:sameAs property.

14

415

420

425

430

435

440

445

450

5.2. Access control evaluation

During access control evaluation, SPARQL queries are dynamically con-
structed from the available information and used to infer missing risk attributes
in the context. An example is shown in Listing [2] where the attribute Role is de-
rived from the available attributes Desktop, HT' TP, and PhD and the relations
canBeUsedBy and usesMachine Type (defined in Table .

Listing 2: SPARQL query for attribute inference

SELECT ?riskFactor 7weight ?value
WHERE
{risk:Desktop a ?riskFactor.
?riskFactor risk:weight ?weight.
risk:Desktop risk:value ?valuel}
UNION
{risk: Wired risk:canBeUsedBy 7MachineTypeRiskAtribute.
?riskAtribute risk:usesMachineType ?MachineTypeRiskAtribute.
?riskAtribute a ?riskFactor.
?riskFactor risk:weight 7?weight.
?riskAtribute risk:value ?value}
UNION
{risk:Wired a ?riskFactor.
?riskFactor risk:weight ?weight.
risk:Wired risk:value ?value}
UNION
{risk:Phd a ?riskFactor.
?riskFactor risk:weight ?weight.
risk:Phd risk:value ?valuel}

The weights of each metric can be adjusted based on the available metrics
according to the following formula:

Wy (z)

WAx)-(ZWt)‘

> Wy

where W, () is the adjusted weight of metric z, > W; is the total weight of all
the metrics,) Wy is the total weight of the available metrics and Wy (z) is the
current weight of metric . For instance, if only the risk metrics of the category
Characteristics of Requester are available, the weight of each metric of the class
(2.7777) is adjusted to:

100
16.6666

Figure [3] describes the integration of the ontology-based approach with the
framework presented in Section[3] The purple elements represent either XACML
or framework-related components already presented, whereas the green elements
are new components used in the ontology-based approach. The additions are the
Context Risk Ontology file, storing an OWL ontology defined for the system and
the SPARQL Engine used for querying the ontology. Some XACML components
(e.g., PAP and PIP) are hidden to keep the Figure simple.

The decision process for this version of the framework is explained in the
following (simplified because of the hidden XACML elements). A subject re-
quests access to an application, which is intercepted by a PEP that sends to the
PDP an XML message containing the context of the request (the Figure shows

- 27777 = 16.666

15

455

460

465

470

475

<Context>
<ConnectionType>Wired</ConnectionType>
<Role>Admin</Role>
<MachineType>Server</MachineType>
<Application>Browser</Application>
Context>

Application —Rea.™> PDP —Req.—> Bl ogio —Req.> SPARQL
Action Resp. Resp. Resp— ENgine

1
k k Context

Risk
Ontology

Figure 3: Overview of the ontology-based architecture

a simplified XML file, but the context is encapsulated in an XACML request).
The context is composed of a series of attributes used in risk estimation and,
in Figure 3] the example request has the attributes ConnectionType, Role, Ma-
chineType and Application. Processing of the XACML policy and the decision
whether to use risk-based access control are omitted. When the access request
reaches the Risk Engine, it processes the risk policy and uses the aggregation
method described in @ The Risk Engine is extended to dynamically build
SPARQL queries as described above and, since it is possible that not all risk
attributes are provided, automated inference is used to recover information and
the weight of each metric is recalculated according to the available metrics, thus
creating a dynamic context. The Risk Engine returns the aggregated risk to the
PDP and the rest of the decision process is as described in Section [3:3]

6. Risk-based Access Control in Cloud Federations

A cloud federation aggregates services from different providers in a single
set supporting three basic interoperability characteristics: resource migration,
redundancy, and combination of complementary services or resources [35]. There
are several proposals for cloud federation architectures, also called multi-clouds
or clouds of clouds [36] B7]. Their idea is to present unique APIs, monitoring,
and metering services, allowing organizations to join the federation [38].

One of the biggest challenges to create and manage a cloud federation is
identity and access management [39]. To enforce access control, a CSP needs
information about users that may come from another CSP and to establish
trust in this scenario, the usual solution is to use an identity federation. An
identity federation is a model of identity management where identity providers
and service providers share user identities inside a circle of trust [40]. This
solution presents problems such as the need of attribute and trust agreements,
interoperability issues and, in practice, shows limited scalability [41].

16

480

485

490

495

500

Obligation
REF Service

. . . Risk Quantification
L SLAService JLSecuntySerwce J

UserService J iResourceService J

o

CloudService

Cloud
Manager

Cloud
Manager

Federation Manager

Identity Federation

Cloud
Manager

Figure 4: Overview of the cloud federation architecture

We focus on two of the aforementioned problems: (i) the need for trust
agreements, and (i) the need for attribute agreements. A risk-based access
control model can be used to reduce both problems. For (i), it is simple to
assign a risk metric to each attribute in a request that comes from a CSP that
is not part of an identity federation, this can even be made dynamically with the
ontology-based approach. As for (ii), it is possible to use the ontology-based
approach presented in Section [5] to infer the missing attributes in a request
and to define synonym relations between local attributes and foreign attributes.
Thus, the use of the risk-based access control framework and instantiations
presented in this paper allows access control in different CSPs without the use
of an identity federation, fostering the formation of dynamic federations.

In this example scenario, we consider the cloud federation architecture shown
in Figure[d] The architecture is simpler than a real world federation but focuses
on basic components and shows the applicability of our access control proposal.
The main components in this architecture are the CSP, which provides the in-
frastructure over which the resources are allocated; the CloudManager, which
connects a CSP to the federation by providing the interoperability services; and
the FederationManager, which groups the CloudManagers into a federation and
manages message passing between members of the federation. The CloudMan-
ager is responsible for many interoperability services, among which the Secu-
rityService, which contains the implementation of the framework presented in

17

505

510

515

520

525

530

535

Section [3] As shown in Figure [d] by a dashed line, some participating CSPs can
form identity federations. We now describe two use cases of this architecture:
resource instantiation and resource access.

Resource instantiation. When a user wants to instantiate a resource, e.g., a
virtual machine or a virtual disk image, he/she can choose to do it on his/her
own cloud or on another, foreign, cloud in the federation. When instantiating
this resource, the user must also create an associated XACML access control
policy and possibly a risk policy (by using an appropriate GUI in both cases).
The risk policy represents the user’s desire of having that resource accessed
using risk-based access control. If both policies are created, the user must also
define the combination algorithm to be used. To create the risk policy, a GUI
containing a list of local quantification and aggregation functions should be
presented to the user, as well as an interface where he/she can insert his/her
own functions defined as web services.

Resource access. When a user tries to access a resource in his/her local cloud,
the access control is performed as usual by the cloud management software (e.g.,
OpenStack). When a user tries to access a resource in a foreign cloud in the
federation, the request is routed to the risk-based access control implementation
in the SecurityService of the CloudManager of that CSP.

7. Implementation and Experiments

We developed two implementations of the framework, the first in Python,
using the ndg—xacmﬂ engine and the second in Java, using the HERAS—AFH
engine. This choice was due to the better availability of ontology tools in Java
and to faster development in Python. The engines were chosen because they
are both open source, with tests and documentation available.

In the Python implementation, we used the web.py framework for the web
services, whereas in the Java implementation we used JSP 2.1 for an example
application, and the SPARQL library available in Apache Jenaﬂ All the exper-
iments report the minimum, maximum and mean average (out of 10 runs) time
(in milliseconds) taken to reach an access decision using different policies in the
framework.

shows the implementation of the risk policy, one risk quantifi-
cation function and the risk aggregation function for the model described in
Section Policies for other models are similar but larger. Other quantifica-
tion functions are similar, taking as input contextual information and returning
a value representing its risk.

Thttps://pypi.python.org/pypi/ndg-xacml/0.5.1
2http://www.herasaf .org/
Shttps://jena.apache.org/

18

https://pypi.python.org/pypi/ndg-xacml/0.5.1
http://www.herasaf.org/
https://jena.apache.org/

540

545

550

555

560

565

7.1. Performance of the instantiations

The instantiations described in Sections[4.1]and [f.2] were tested in the Python
implementation, whereas the custom model and the ontology-based approach
were tested in the Java implementation. Table [4] shows the time spent to reach
an access decision using three different policies: only XACML (0 risk metrics),
XACML+[33] (4 risk metrics), and XACML+[25] (27 risk metrics). In this ex-
periment, all the quantification and aggregation methods are local. As expected,
due to the number of metrics, XACML only is the fastest and XACML+[25] is
the slowest. Table [5| shows the results for the custom model (31 risk metrics).
In this experiment, we measured the time taken to reach an access decision (De-
cision row in the Table), the time taken for the example application to receive
and forward the access request (App row), and the time taken from the moment
the user requests the page in the browser until it is fully loaded (Browser row).

To test the ontology-based approach, we used Protég@ to define the OWL
ontology representing the custom model and the relations shown in Table
Several instances of the ontology classes were created to allow for the inference
of missing metrics. First, to validate the approach, we developed a base scenario
using our custom model enriched with the ontology. We then measured the risk
in four distinct cases. First, with the 31 metrics (R), then with 7 missing metrics
(R), then with the same missing metrics but adjusting the weights (R,) and
then using metric inference and adjusting the weights (R;). The results are
shown in Figures [5] (only considering contextual risk) and [6] (considering the
total risk), where the y axis stands for the risk value and the x axis shows the
four cases described above (R in blue, R,, in red, R, in green and R; in purple).
It is noticeable that the use of inference and weight redistribution brings the
estimated risk closer to the base risk than when none of the approaches is used.
The minimum time spent querying the ontology was 150 ms, the maximum time
was 200 ms and the average time was 178.9 ms. The time taken to modify a
policy and the reasoning time were not measured because they are done offline,
since the policy is only modified by a system administrator and not for every
access request. The time that the reasoner takes to parse the ontology structure
is also out of the scope of the access requests.

4http://protege.stanford.edu/

Table 4: Performance of risk policies izkzilsl 5 Performance of the custom
| Policy | min | max | avg | | Measure | min | max | avg |
XACMLF[33] | 1986 | 11973 | 2436 | [“pp <10 T so7 T 1199

19

http://protege.stanford.edu/

570

575

580

585

590

800 | 692.5 727.7 90.9 400 | 3627 3513 3708

600 300

400 200

200 100

0 0
R Rm Ra Ri R Rm Ra Ri

Figure 5: Ontology experiments (contex- Figure 6: Ontology experiments (total
tual risk) risk)

7.2. Number of metrics

We also explored the impact of the number of metrics in a risk policy. In the
first experiment, there is a varying number of metrics with local quantification.
To focus on the number of metrics and not their complexity, all the quantifica-
tion functions used were the same, simply returning a random number for the
risk value. The results are shown in Table [6] It is clear that increasing the
number of metrics degrades performance, but this degradation is smooth and
even with many metrics (10000) the average time is around 1.5 seconds, which
is reasonable. It is also important to highlight that a great part of this time
is due to processing the XML policy and not to the quantification functions
themselves.

Next we study the use of remote quantification with web services. In this
experiment, we used a risk policy with 10 metrics (with more than 10 remote
metrics, performance becomes totally unacceptable). To test the impact of
remote metrics in the same policy, we defined 4 test cases. The first case (A)
contains only XACML with no risk metrics, for reference. The second (B)
contains 10 local quantification metrics. The third (C) contains 5 local and 5
remote metrics and the fourth (D) contains 10 remote metrics. Table [7] shows
the results of all test cases. It is clear that the use of web services severely affects
performance and that the use of only 10 remote functions (test case D) is already
inadequate (with an access decision time of 4.2 seconds on average). Figure El
shows the time taken for an access decision in milliseconds (y axis) growing
with the number of metrics (x axis). The solid line with square markers shows

Table 6: Performance with a different number of metrics (ms)

| Metrics | min | max | avg |
1 1.832 12.130 2.243
10 2.612 12.876 3.171
100 10.922 60.442 14.030
1000 96.041 175.245 121.383
10000 1168.511 | 1517.364 | 1361.025

20

595

600

605

610

25000

20000

15000

10000

(sw) yuads awi)

5000 g

Number of metrics

l ol
0 10 20 30 a0 50

Figure 7: Performance of local and remote functions

this growth for local metrics and the dashed line with round markers shows the
growth for remote functions.

7.3. Discussion

Measuring security. There is no standard quantitative measure for the security
of an access control system. Such a system can be proven to be safe by defining
its set of possible states and showing that there is no state where permissions
can leak to unauthorized subjects, which is undecidable [42]. Hu et al. [42]
recommend qualitative metrics to assess access control systems. The metrics
are based on administrative capabilities and costs, policy coverage, extensibility,
and performance. The administrative capabilities and costs of our framework
are the same as XACML, with the added cost to manage risk policies. The
coverage of policies and extensibility of the model were shown in the experiments
by implementing models described in related work [25], [33]. Performance was
tested in the experiments and reported in Tables [4] to [7] and in Figures [p] to [7]

Number of metrics. The experiments in Section [7.2] clearly report a loss of
performance as the number of metrics used in a system grows. However, a
larger number of metrics also allows a policy administrator to have more fine-
grained control over the risk components involved in an access request. In the
end, it is not possible to recommend a generally acceptable number of metrics,
just as it is not possible to recommend a general number of roles and permissions
in RBAC or a general number of attributes in ABAC. These numbers depend
on the system being used, the desired level of risk granularity and the desired
performance.

Table 7: Performance with remote quantification (ms)

| Test case | Metrics min [max | avg
A XACML only 1.057 9.372 1.46
B 10 local 1.824 15.564 4.574
C 5 local + 5 remote | 1556.182 | 2813.56 | 1726.71
D 10 remote 3247.563 | 10350.5 | 4220.6

21

615

620

625

630

635

640

645

650

8. Related work

Risk-based Access Control. Fall et al. [15] discussed the inadequacy of current
access control models for multi-tenant clouds and proposed the use of RAdAC.
Although their work introduced risk-based access control for the cloud, there
was no validation of the idea. Arias-Cabarcos et al. [32] described challenges for
federated identity management in the cloud, especially trust agreements, and
proposed a risk evaluation methodology to enable dynamic identity federations.
The authors proposed a set of metrics and a fuzzy aggregation function, but the
work lacks a reference for the values of the metrics. The metrics are prefixed
in the system and users cannot provide their own quantification or aggregation
methods. Chen et al. [43] proposed the encoding of risk mitigation policies based
on the XACML RBAC profile to incorporate risk management into an RBAC
solution with support for obligations. The paper does not define risk quantifi-
cation functions and there is no way to combine or aggregate the evaluation
results of risk policies with the XACML results. Gasparini [16] extended the
previous work introducing a risk-aware group-based access control model and
applying the extension of XACML [43] in a health care scenario. Choi et al. [44]
presented another extension of XACML to support risk-based access control,
however their work is limited to medical information systems.

Ontologies for access control. Dersing et al. [8] developed a model that uses
semantic contexts and ontologies to dynamically determine an appropriate role
assignment for an incident handling system. Finin et al. [7] studied the relation
between OWL and RBAC, showing two ways to support RBAC in OWL and dis-
cussing how they can be extended to attribute-based models. Tsai and Shao [45]
used ontologies to build a hierarchy of roles for a specific RBAC domain. Bern-
abe et al. [46] described an authorization model encompassing several RBAC
characteristics that uses semantic web for the access rules.

Cloud federations. In [47) 48, 49] a federation architecture was proposed, using
a component integrated in the CSPs. Based on this architecture, Celesti et
al. [50] proposed a federated identity management mechanism using a third-
party identity provider. Contrail is a framework for building cloud federations
with authentication and authorization, supporting, e.g., UCON [51].

This work. Our proposal allows the definition of flexible risk policies indepen-
dent of the type of access control model used, the use of different risk metrics,
the aggregation of various risk quantification functions to achieve a final risk
value to be compared with a risk threshold, and the application of the frame-
work in dynamic cloud environments and cloud federations. An ontology-based
approach helps in calculating risk according to the context and in adjusting
the weights of each metric considering the actual number of metrics, which is
another novel contribution.

22

655

660

665

670

675

680

685

690

9. Discussion and Conclusions

We proposed a framework for risk-based access control, based on an exten-
sion of XACML and the use of risk policies, which adds flexibility for resource
sharing in a dynamic and collaborative environment such as the cloud. The
framework has as main advantages the possibility of using risk metrics, quantifi-
cation and aggregation functions from different sources, including those defined
by the user, and the use of basic risk policies to maintain minimum security re-
quirements. Another important feature is the possibility of having distributed
risk engines and enforcement points, as in XACML. We also described the im-
plementation of two prototypes that showed satisfactory experimental results.

The expressiveness of our proposal was demonstrated by its instantiation
with two risk-based models found in the literature, the development of a custom
model and the proposed use of ontologies as a tool to enhance these models. We
also identified a possible usage scenario, namely the integration of the framework
in a cloud federation platform to allow the establishment of cloud federations
without the use of identity federations.

The main limitations of the proposal are the overhead from processing risk
policies and especially the performance degradation when using remote quan-
tification functions. Performance improvements could be obtained by using
JSON for representing policies [52], decision diagrams for XACML policy evalu-
ation [53], parallel processing of remote functions and caching of access decisions.

As future work, we intend to integrate the access control model in a mature
cloud federation project; implement other risk quantification methods to eval-
uate the need for new components; and develop a reference set of risk metrics
for the cloud.

References

[1] P. Mell, T. Grance, SP 800-145. The NIST Definition of Cloud Computing,
Tech. rep., NIST, Gaithersburg, MD, United States (2011).

[2] K. Ren, C. Wang, Q. Wang, Security Challenges for the Public Cloud,
IEEE Internet Computing 16 (1) (2012) 69-73.

[3] OASIS, A Brief Introduction to XACML, Available at: |https:
//www.oasis-open.org/committees/download.php/2713/Brief_
Introduction_to_XACML.htmll Last accessed: 5th July, 2016 (2003).

[4] R. McGraw, Risk-Adaptable Access Control (RAdAC), in: NIST Privilege
(Access) Management Workshop, 2009.

[5] D. dos Santos, C. Westphall, C. Westphall, Risk-based Dynamic Access
Control for a Highly Scalable Cloud Federation, in: Proc. SECURWARE,
2013, pp- 8-13.

[6] A. Karp, H. Haury, M. Davis, From ABAC to ZBAC: The Evolution of
Access Control Models, Tech. rep., IBM (2009).

23

https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html

695

700

705

710

715

720

725

730

[7]

T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, B. Thu-
raisingham, ROWLBAC: Representing Role Based Access Control in OWL,
in: Proc. SACMAT, 2008, pp. 73-82.

A. Dersingh, R. Liscano, A. Jost, J. Finnson, Dynamic Role Assignment
Using Semantic Contexts, in: Proc. WAINA, 2009, pp. 1049-1054.

D. R. dos Santos, C. Westphall, C. Westphall, A Dynamic Risk-based Ac-
cess Control Architecture for Cloud Computing, in: Proc. NOMS, 2014,

pp- 1-9.
R. Marinho, C. Westphall, G. Schmitt, A Dynamic Approach to Risk Cal-
culation for the RAdAC Model, in: Proc. SAM, 2014, pp. 83-88.

M. Benantar, Access Control Systems: Security, Identity Management and
Trust Models, Springer, 2006.

V. Hu, D. Kuhn, D. Ferraiolo, Attribute-based Access Control, Computer
48 (2) (2015) 85-88.

G. Zhang, M. Parashar, Dynamic Context-aware Access Control for Grid
Applications, in: Proc. Grid, 2003, pp. 101-108.

G. Zhang, M. Parashar, Context-aware dynamic access control for pervasive
applications, in: Proc. CNDS, 2004, pp. 21-30.

D. Fall, G. Blanc, T. Okuda, Y. Kadobayashi, S. Yamaguchi, Toward Quan-
tified Risk-Adaptive Access Control for Multi-tenant Cloud Computing, in:
Proc. JWIS, 2011.

L. Gasparini, Risk-Aware Access Control and XACML, Ph.D. thesis, Uni-
versity of Padova (2013).

Y. Li, H. Sun, Z. Chen, J. Ren, H. Luo, Using Trust and Risk in Access
Control for Grid Environment, in: Proc. SECTECH, 2008, pp. 13-16.

N. Diep, S. Lee, Y. Lee, H. Lee, Contextual Risk-Based Access Control, in:
Proc. SAM, 2007, pp. 406-412.

A. Ahmed, N. Zhang, An Access Control Architecture for Context-Risk-
Aware Access Control: Architectural Design and Performance Evaluation,
in: Proc. SECURWARE, 2010, pp. 251-260.

N. Dimmock, How Much is “enough”? Risk in Trust-based Access Control,
in: Proc. WETICE, 2003, pp. 281-282.

A. Brucker, H. Petritsch, Extending Access Control Models with Break-
glass, in: Proc. SACMAT, 2009, pp. 197-206.

V. Suhendra, A survey on access control deployment, in: Proc. FGIT-
SecTech, 2011, pp. 11-20.

24

735

740

745

750

755

760

765

[23]

[24]

[25]

[26]

[27]

28]

R. Shaikh, K. Adi, L. Logrippo, Dynamic Risk-based Decision Methods for
Access Control Systems, Computers & Security 31 (4) (2012) 447-464.

JASON Program Office, Horizontal Integration: Broader Access Models for
Realizing Information Dominance, Tech. rep., MITRE Corporation (2004).

D. Britton, I. Brown, A Security Risk Measurement for the RAdAC Model,
Master’s thesis, Naval Postgraduate School (2007).

P. Cheng, P. Rohatgi, C. Keser, P. Karger, G. Wagner, A. Reninger, Fuzzy
Multi-Level Security: An Experiment on Quantified Risk-Adaptive Access
Control, in: Proc. IEEE S&P, 2007, pp. 222-230.

Q. Ni, E. Bertino, J. Lobo, Risk-based access control systems built on fuzzy
inferences, in: Proc. ASTACCS, 2010, pp. 250-260.

I. Molloy, L. Dickens, C. Morisset, P. Cheng, J. Lobo, A. Russo, Risk-
based Security Decisions Under Uncertainty, in: Proc. CODASPY, 2012,
pp. 157-168.

Q. Wang, H. Jin, Quantified Risk-adaptive Access Control for Patient Pri-
vacy Protection in Health Information Systems, in: Proc. ASTACCS, 2011,
pp- 406-410.

W. Borst, Construction of Engineering Ontologies for Knowledge Sharing
and Reuse, Ph.D. thesis, University of Twente (1997).

S. Staab, R. Studer, Handbook on Ontologies, Springer, 2009.

P. Arias-Cabarcos, F. Almenaarez-Mendoza, A. Maron-Lopez, D. Diaz-
Sanchez, R. Sanchez-Guerrero, A Metric-Based Approach to Assess Risk
for “On Cloud” Federated Identity Management, J. of Net. and Sys. Man.
20 (2012) 513-533.

M. Sharma, Y. Bai, S. Chung, L. Dai, Using Risk in Access Control for
Cloud-Assisted eHealth, in: Proc. HPCC, 2012, pp. 1047-1052.

P. Saripalli, B. Walters, QUIRC: A Quantitative Impact and Risk Assess-
ment Framework for Cloud Security, in: Proc. CLOUD, 2010, pp. 280-288.

T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, M. Kunze, Cloud
Federation, in: Proc. CLOUD COMPUTING, 2011, pp. 32-38.

M. AlZain, E. Pardede, B. Soh, J. Thom, Cloud Computing Security: From
Single to Multi-clouds, in: Proc. HICSS, 2012, pp. 5490-5499.

M. Vukolié, The Byzantine Empire in the Intercloud, SIGACT News 41 (3)
(2010) 105-111.

P. Harsh, Y. Jegou, R. Cascella, C. Morin, Contrail virtual execution plat-
form challenges in being part of a cloud federation, in: Proc. ServiceWave,
2011, pp- 50-61.

25

770

775

780

785

790

795

800

[39]

[40]

[45]

[46]

[47]

[48]

[49]

D. Sriram, Federated Identitiy Management in Intercloud, Master’s thesis,
TU Munchen (2013).

H. Lee, I. Jeun, H. Jung, Criteria for Evaluating the Privacy Protection
Level of Identity Management Services, in: Proc. SECURWARE, 2009, pp.
155-160.

K. Lampropoulos, S. Denazis, Identity Management Directions in Future
Internet, IEEE Communications Magazine 49 (12) (2012) 74-83.

V. Hu, D. Ferraiolo, D. Kuhn, Assessment of Access Control Systems,
Interagency Report 7316, Tech. rep., National Institute of Standards and
Technology (2006).

L. Chen, L. Gasparini, T. J. Norman, XACML and Risk-Aware Access
Control, in: Proc. ICEIS, 2013, pp. 66-75.

D. Choi, D. Kim, S. Park, A framework for context sensitive risk-based
access control in medical information systems, Comp. Math. Methods in
Medicine 2015 (2015) 265132:1-265132:9.

W. Tsai, Q. Ssao, Role-Based Access-Control Using Reference Ontology in
Clouds, in: Proc. ISADS, 2011, pp. 121-128.

J. Bernabe, J. Perez, J. Calero, F. Clemente, G. Perez, A. Skarmeta, To-
wards an authorization system for cloud infrastructure providers, in: Proc.
SECRYPT, 2011, pp. 333-338.

A. Celesti, F. Tusa, M. Villari, A. Puliafito, Security and Cloud Computing:
InterCloud Identity Management Infrastructure, in: Proc. WETICE 2010,
2010, pp. 263-265.

A. Celesti, F. Tusa, M. Villari, A. Puliafito, Three-Phase Cross-Cloud Fed-
eration Model: The Cloud SSO Authentication, in: Proc. AFIN, 2010, pp.
94-101.

A. Celesti, F. Tusa, M. Villari, A. Puliafito, Federation Establishment Be-
tween CLEVER Clouds Through a SAML SSO Authentication Profile, Int.
J. on Adv. in Internet Tech. 4 (1).

A. Celesti, F. Tusa, M. Villari, A. Puliafito, How to Enhance Cloud Archi-
tectures to Enable Cross-Federation, in: Proc. CLOUD, 2010, pp. 337-345.

M. Coppola, P. Dazzi, A. Lazouski, F. Martinelli, P. Mori, J. Jensen,
I. Johnson, P. Kershaw, The Contrail Approach to Cloud Federations, in:
Proc. ISGC, 2012.

OASIS, JSON Profile of XACML 3.0 Version 1.0, Available at:
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/cs01/
xacml-json-http-v1.0-cs01.html. Last accessed: 5th July, 2016 (2014).

26

http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/cs01/xacml-json-http-v1.0-cs01.html
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/cs01/xacml-json-http-v1.0-cs01.html
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/cs01/xacml-json-http-v1.0-cs01.html

s [53] C. Ngo, Y. Demchenko, C. de Laat, Decision Diagrams for XACML Policy
Evaluation and Management, Computers & Security 49 (0) (2015) 1-16.

27

810

815

820

825

830

835

840

845

850

855

860

Appendix A. Example of risk policy and metrics used in the experi-
ments

Listing 3: Risk policy for the model described in @

<rp:risk-policy version="1.0" xmlns:rp="http://inf.ufsc.br/ " danielrs">
<rp:resource id="1"/> <rp:user id="1"/>
<rp:metric-set name="sharma2012">

<rp:metric>
<rp:name>Confidentiality</rp:name>
<rp:description>Confidentiality cost</rp:description>
<rp:quantification>https://localhost:8443/QuantifyConfidentiality
</rp:quantification>

</rp:metric>

<rp:metric>
<rp:name>Availability</rp:name>
<rp:description>Availability cost</rp:description>
<rp:quantification>https://localhost:8443/QuantifyAvailability
</rp:quantification>

</rp:metric>

<rp:metric>
<rp:name>Integrity</rp:name>
<rp:description>Integrity cost</rp:description>
<rp:quantification>https://localhost:8443/QuantifyIntegrity
</rp:quantification>
</rp:metric>

</rp:metric-set>

<rp:aggregation-function>https://localhost:8443/Aggregate

</rp:aggregation-function>

<rp:risk-threshold>1.5</rp:risk-threshold>

</rp:risk-policy>

Listing 4: Risk quantification and aggregation for the model described in [.]

class QuantifyAvailability:
def GET(self):

params = web.input(user=None, action=None, resource=None)
action = params.action
resource = params.resource

impact = 1
if action == "VIEW" and resource not in sensitive:
impact = 0

web.setcookie("availability", impact)

class Aggregate:
def GET(self):
a = float(web.cookies().get("availability"))
= float(web.cookies().get("integrity"))
c = float(web.cookies().get("confidentiality"))
h, p = (r.random(), r.random())

[

return ((a*xp) + (i*p) + (c*p) + h)

28

	Introduction
	Background
	Risk-based Access Control
	eXtensible Access Control Markup Language (XACML)
	Ontologies

	A Framework for Risk-Based Access Control in the Cloud
	Definitions and Architecture
	Risk Policies
	Decision Process

	Instantiating the framework
	Confidentiality, Integrity, and Availability
	RAdAC
	Custom model

	An Ontology-based Approach to Risk Calculation for the RAdAC Model
	Ontology definition
	Access control evaluation

	Risk-based Access Control in Cloud Federations
	Implementation and Experiments
	Performance of the instantiations
	Number of metrics
	Discussion

	Related work
	Discussion and Conclusions
	Example of risk policy and metrics used in the experiments

