
Automatically Finding Execution Scenarios
to Deploy Security-Sensitive Workflows 1

Daniel Ricardo dos Santos a,b,c,∗, Silvio Ranise a, Luca Compagna b and Serena Elisa Ponta b

a Fondazione Bruno Kessler
b SAP Labs France
c University of Trento

Abstract. We introduce a new class of analysis problems, called Scenario Finding Problems (SFPs), for security-sensitive
business processes that—besides execution constraints on tasks—define access control policies (constraining which users can
execute which tasks) and authorization constraints (such as Separation of Duty). The solutions to SFPs are concrete execution
scenarios that assist customers in the reuse and deployment of security-sensitive workflows. We study the relationship of SFPs
to well-known properties of security-sensitive processes such as Workflow Satisfiability and Resiliency together with their
complexity. Finally, we present a symbolic approach to solving SFPs and describe our experience with a prototype implementation
on real-world business process models taken from an on-line library.
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1. Introduction

Organizations rely on Business Process Management (BPM) [38] to achieve certain business objectives
by orchestrating workflows, which are collections of sequences of tasks executed by human or software
agents. An increasingly important class of workflows is that of security-sensitive workflows [2], in which
task execution constraints are complemented with an authorization policy (defining which users can
execute which tasks) and a set of authorization constraints (further restricting which users can execute
some sub-sets of the tasks). One of the most important problems for security-sensitive workflows is the
Workflow Satisfiability Problem (WSP) [10], which consists of checking if there exists an assignment of
users to tasks such that at least one task execution sequence in a workflow successfully terminates while
satisfying all authorization constraints and the authorization policy.

Several papers (see, e.g., [10,15,16,37]) have provided solutions to the WSP, which are becoming less
and less satisfactory because of the recent trend in BPM of collecting and reusing large numbers of
business process models [36,18,39]. For instance, SAP HANA Workflow1 is a BPMN-based solution
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that allows for the creation of template business process models that can be deployed and operated in
different contexts. At deployment time, what is crucial for customers reusing a template from the library
is to understand whether it can be successfully instantiated with the authorization policy adopted by their
organization. This means that customers want to solve the problem of finding execution scenarios that show
the termination of the instantiated business process model by giving evidence that some of the employees
can successfully execute the various tasks in the workflow. Variants of this basic problem may be of
interest to assist customers in deploying security-sensitive workflows under specific operational conditions.
A first refinement is to focus on those scenarios that can be executed by a given “small” set of users,
called minimal user base in the literature [16]. This would enable organizations to assess the likelihood of
emergencies or extraordinary situations due to, e.g., employee absences. A second variant of the problem
of finding execution scenarios is to discover those that are resilient to the absence of users, i.e. whether the
termination of the workflow is guaranteed even if a certain number of users (regardless of which concrete
users) is unavailable to execute tasks for a given execution [37]. A refinement of all previous problems
consists of considering only those scenarios satisfying some additional conditions on the execution of a
workflow, such as only a given user can execute a task, the Boolean value of a conditional is true (or false),
the order of execution of a set of parallel tasks is fixed, or arbitrary combinations of such constraints. In
the following, we call Scenario Finding Problems (SFPs) this kind of problems.

Techniques for solving the WSP can also be used to solve SFPs; unfortunately, this has a very high
computational cost because of two reasons. First, WSP is NP-hard already in the presence of one SoD
constraint [37]. Second, techniques for the WSP are not able to exploit the fact that execution and
authorization constraints are fixed and only the authorization policy changes at deployment time. To
overcome these limitations, the paper makes the following contributions.

– We give precise statements of four SFPs together with a discussion of their relationships with the
WSP (Section 3).

– We describe methods to automatically solve the four SFPs by adapting the technique for the synthesis
of run-time monitors for the WSP developed in [6] (Section 4).

– We validate our solutions on real-world examples from a library of reusable business process models
(Section 5).

The idea underlying our approach can be summarized as follows. Model checking is a technique for
determining whether a (formal) model of a system satisfies a given property. If the property is false in the
model, model checkers typically produce a counterexample scenario, which is then used by developers to
fix bugs in the design of the system. To solve a SFP, we use the capability of model checkers to return
counterexamples as follows. We formally represent security-sensitive workflows as symbolic transition
systems following [6]. The symbolic model checker is then asked to find a counterexample to the property
that the system is not terminating. Indeed, the returned counterexample (if any) is precisely an execution
scenario solving the SFP. Since we are interested in finding all execution scenarios, we modify the model
checker in order to compute all counterexamples, not just one. We represent a set of counterexample
scenarios by using a scenario graph, which allows us to compactly encode all possible interleavings of
tasks in a workflow.

The crux of our approach is that the model of the security-sensitive workflow in input to the symbolic
model checker only contains the constraints on the control flow and the authorization constraints while
it abstracts away from the authorization policy. In this way, the scenario graphs computed by the model
checker can then be refined with respect to an authorization policy associated to a particular deployment
context. The refinement is performed by a depth-first search of the scenario graph to prune those scenarios



that do not satisfy the authorization policy used in the deployment context under consideration. When
considering resiliency, this is combined with a (heuristic) method to generate subsets of users not
containing k users (by adapting a result from [24]) in order to find scenarios guaranteeing the termination
of a workflow despite the absence of k users.

This paper is an extended version of [19], with the main additions being the definition of two new SFPs
(involving resiliency and constrained scenarios) in Sections 3.3 and 3.4; an expanded description of the
solution to the WSP in Section 4.2; new experiments in Section 5; an extensive comparison with related
work in Section 6.1; and a description of future work in Section 6.2.

2. Preliminaries

Let T be a finite set of tasks and U a finite set of users. An execution scenario (or, simply, a scenario)
is a finite sequence of pairs of the form (t, u), written as t(u), where t ∈ T and u ∈ U . The intuitive
meaning of a scenario η = t1(u1), ..., tn(un) is that task ti is executed before task tj for 1 ≤ i < j ≤ n
and that task tk is executed by user uk for k = 1, ..., n. A workflow W (T,U) is a set of scenarios. Among
the scenarios in a workflow, we are interested in those that describe successfully terminating executions in
which users execute tasks satisfying the authorization constraints and the authorization policy. Since the
notion of successful termination depends on the definition of the workflow (e.g., in case of a conditional
choice, we will have two acceptable execution sequences according to the Boolean value of the condition),
in the following we focus only on the authorization policy and the authorization constraints while assuming
that all the scenarios in the workflow characterize successfully terminating behaviors.

Given a workflow W (T,U), an authorization relation TA is a sub-set of U × T where (u, t) ∈ TA
means that u is authorized to execute task t. We say that a scenario η of a workflowW (T,U) is authorized
according to TA iff (u, t) is in TA for each t(u) in η. An authorization constraint over a workflow
W (T,U) is a tuple (t1, t2, ρ) where t1, t2 ∈ T and ρ is a sub-set of U × U . (It is possible to generalize
authorization constraints to the form (T1, T2, ρ) where T1, T2 are sets of tasks as done in, e.g., [15]. We
do not do this here for the sake of simplicity.) For instance, a SoD constraint between tasks t and t′ can
be formalized as (t, t′, 6=) with 6= being the relation {(u, u′)|u, u′ ∈ U and u 6= u′}. A scenario η of
W (T,U) satisfies the authorization constraint (t1, t2, ρ) over W (T,U) iff there exist t1(u1) and t2(u2)
in η such that (u1, u2) ∈ ρ. Let C be a (finite) set of authorization constraints, a scenario η satisfies C
iff η satisfies c, for each c in C. A scenario η of a workflow W (T,U) is eligible according to a set C
of authorization constraints iff η satisfies C. A workflow W (T,U) is security-sensitive according to an
authorization relation TA and a (finite) set C of authorization constraints iff every scenario η in W (T,U)
is both authorized and eligible2.

There are various ways to specify security-sensitive workflows; we illustrate one of the most used
methods by means of an example.

Example 2.1 (Trip Request Workflow (TRW)). A typical example of a security-sensitive workflow has
the goal of requesting trips for employees in an organization. It is composed of five tasks: Trip request
(t1), Car rental (t2), Hotel booking (t3), Flight reservation (t4), and Trip validation (t5). The execution
of the tasks is constrained as follows: t1 must be executed first, then t2, t3 and t4 can be executed in
any order, and when all have been performed, t5 can be executed. Overall, there are six possible task

2The notions of eligible and authorized scenarios were adapted from [15].



Fig. 1. TRW in (extended) BPM notation

execution sequences in which the first is always task t1, the last is always task t5, and—in between—there
is any one of the six permutations of t2, t3 and t4.

It is also required that each task is executed under the responsibility of a user who has the right to
execute it according to some authorization policy. To prevent frauds, five authorization constraints—called
Separation of Duty (SoD) in the literature; see, e.g., [10]—must also be enforced: each one of the following
pairs of tasks must be executed by distinct users in any sequence of task executions of the workflow:
(t1, t2), (t1, t4), (t2, t3), (t2, t5), and (t3, t5).

This workflow can be modeled in a graphical notation such as BPMN [30] as shown in Figure 1: the
circle on the left represents the start event (triggering the execution of the workflow), whereas that on
the right the end event (terminating the execution of the workflow), tasks are depicted by labeled boxes,
the constraints on the execution of tasks are shown as solid arrows (for sequence flows) and diamonds
labeled by + (for parallel flows), the fact that a task must be executed under the responsibility of a user is
indicated by the man icon inside a box, and the SoD constraints as dashed lines labeled by 6=.

We use the TRW introduced in the example above to illustrate the main notions in the paper.

Definition 2.1 (Workflow Satisfiability Problem (WSP)). Given a workflow W (T,U), an authorization
relation TA, and a set C of authorization constraints, return (if possible) a scenario η which is authorized
according to TA and eligible according to C.

We use Example 2.2 to show an instance of this problem and the solution.

Example 2.2. A simple situation in which the TRW in Example 2.1 can be deployed is a tiny or-
ganization with a set U = {a, b, c} of three users and the following authorization policy TA =
{(a, t1), (b, t1), (a, t2), (b, t2), (c, t2), (a, t3), (b, t3), (c, t3), (a, t4), (a, t5), (b, t5), (c, t5)}. The organi-
zation would then like to know if there is an execution scenario that allows the process to termi-
nate according to TA. Indeed, this is the case as shown by the following sequence of task-user pairs:
η = t1(b), t3(c), t4(a), t2(a), t5(b). It is easy to check that the tasks in η are executed so that the ordering
constraints on task execution are satisfied, each user u in each pair t(u) of η is authorized to execute t
since (u, t) ∈ TA, and each SoD constraint is satisfied (e.g., tasks t1 and t2 are executed by the distinct
users b and a, respectively).



3. Scenario Finding Problems

Reuse in Business Process Management has been an important topic of research and industrial appli-
cation; see, e.g., [22,17]. The reuse of business process models increases the productivity of designers
and the quality of the models. A crucial step in reusing process templates is their deployment. Helping
customers to assess whether the process instance is suitable to their needs is indeed fundamental. For
example, checking the existence of execution scenarios for a deployed security-sensitive workflow—i.e.
after adding a particular authorization policy—can reassure customers about the business continuity of
the process. Automating the identification of such scenarios is of particular importance when a library of
process templates are available and are to be re-used in different organizations adopting different authoriza-
tion policies. As mentioned above, it is possible to pre-compute—once and for all—the set E of eligible
scenarios, i.e. those scenarios satisfying the authorization constraints, associated to a security-sensitive
workflow in a library (we will describe how to compute and compactly represent this set in Section 4
below). We are then left with the problem of finding those scenarios in E that are still computable as soon
as an authorization policy becomes available (and possibly satisfying some additional properties).

3.1. Basic scenarios

We begin by defining a basic version of our scenario finding problems, whose definition (and solution)
will help us in understanding (and solving) more complex problems.

Definition 3.1 (Basic Scenario Finding Problem (B-SFP)). Given the finite set E of eligible scenarios
according to a set C of authorization constraints in a workflow W (T,U), return (if possible) a scenario
η ∈ E which is authorized according to a given authorization relation TA.

Example 3.1. Let us consider the TRW. If U = {Alice,Bob,Charlie,Dave,Erin , Frank} is the set of
users, then the set E of eligible scenarios contains, among many others, the following elements:

η1 = t1(Alice), t2(Bob), t3(Charlie), t4(Dave), t5(Erin)

η2 = t1(Bob), t2(Alice), t3(Charlie), t4(Alice), t5(Bob)

η3 = t1(Bob), t4(Charlie), t2(Alice), t3(Dave), t5(Bob)

Now, let TA = {(Alice, t1), (Bob, t1), (Alice, t2), (Bob, t2), (Charlie, t3), (Alice, t4), (Dave, t4),
(Bob, t5), (Erin, t5)} be the authorization relation, then η1 and η2 are solutions to the B-SFP, while η3
is not because (Dave, t3) 6∈ TA.

A scenario η solving the B-SFP is also a solution of the WSP and vice versa. So, in principle, to solve
the B-SFP for a workflow W (T,U), a set C of authorization constraints, an authorization policy TA,
and ηe = t(u), t′(u′), ... an eligible scenario in E, we can reuse an algorithm A returning answers to
the WSP as follows. Initially, we consider the task-user pair t(u) in ηe and create a new authorization
relation TA1 = TA|(u,t) derived from TA by deleting all pairs (x, t) ∈ TA with x 6= u. We invoke A on
the WSP for W (T,U), C, and TA1: if A returns a scenario, this must have the form t(u), η where η is
some sequence of task-user pairs (notice that t(u), η and ηe are guaranteed to have only t(u) as a common
prefix). Afterwards, we move to the task-user pair t′(u′) in ηe and run A on the WSP for W (T,U), C,
and TA2 = TA1|(u′,t′). If A returns a scenario, this must have the form t(u), t′(u′), η′ where η′ is some
sequence of task-user pairs (notice that t(u), t′(u′), η′ and ηe are guaranteed to have only t(u), t′(u′) as
a common prefix). By repeating this process for each ηe in E, until all tasks in ηe are executed, we can



check if it is also authorized according to TA (besides being eligible as ηe is in E). Overall, there are at
most O(`max · |E|) invocations to A, where `max is the longest (in terms of number of task-user pairs
occurring in it) scenario of E. Indeed, this is very expensive from a computational point of view since the
WSP is NP-hard already in presence of one SoD constraint [37] and, most importantly, we do not exploit
the fact that the scenarios in E are eligible.

A better approach to solve the B-SFP is to consider each eligible scenario ηe in E and check if all
task-user pairs in ηe are authorized according to TA. This means that there are at most O(`max · |E|)
invocations to the algorithm for checking membership of a user-task pair to TA. The complexity of
such an algorithm depends on how TA has been specified. Policy languages are designed to make such
a check very efficient (e.g., linear or polynomial); this is in sharp contrast to the heavy computational
cost of running A. Below, we assume authorization policies to be specified in Datalog so that checking
membership to TA is equivalent to answering a Datalog query, which is well-known to have polynomial-
time (data) complexity [7]. Even though checking for membership to TA is efficiently performed, the
overall computational complexity may be problematic since such a check must be repeated O(`max · |E|)
and |E| may be very large. For instance, as we will show below, already for the simple TRW with |U | = 6
(as in Example 3.1), the cardinality of E is 19, 080. Intuitively, the larger the set U of users, the higher the
cardinality of E. It is thus important to design a suitable data structure to represent the available set E of
eligible scenarios which permits to design an efficient strategy to search through all scenarios and identify
one that is authorized. We will see this in Section 4.2.

3.2. Minimal user-base scenarios

A refinement of B-SFP is to search for (eligible and) authorized scenarios in which a “minimal” set
of users occurs. Formally, let η be a scenario in a workflow W (T,U), the set of users occurring in η is
usr(η) = {u|t(u) ∈ η}. Following [16], we define a minimal user base of a workflow W (T,U) to be a
sub-set U ′ of the set U of users such that there exists a scenario η in W (T,U) in which usr(η) = U ′ and
there is no scenario η′ in W (T,U) in which usr(η′) is a strict sub-set of U ′.

Definition 3.2 (Minimal user-base scenario finding problem (MUB-SFP)). Given the set E of eligible
scenarios according to a set C of authorization constraints in a workflow W (T,U), return (if possible)
a scenario η ∈ E which is authorized according to a given relation TA and such that the set usr(η) of
users occurring in η is a minimal user base.

Example 3.2. Let us consider again the TRW together with the set U of users, the set E of eligible
scenarios, and the authorization relation TA of Example 3.1. A solution to the MUB-SFP is ηM =
t1(Bob), t2(Alice), t3(Charlie), t4(Alice), t5(Bob) and a minimal user base is usr(ηM ) = {Alice,
Bob,Charlie}.

An approach derived from that of solving the B-SFP can also solve the MUB-SFP. We consider each
eligible scenario ηe in E and check if all task-user pairs in ηe are authorized according to TA. We also
maintain a variable ηM storing an eligible scenario in E such that ηM is authorized (according to TA)
and usr(ηM ) is a candidate minimal user base. Initially, ηM is set to the empty sequence ε. If the eligible
scenario ηe under consideration is authorized and ηM 6= ε, then we compare the cardinalities of usr(ηe)
and usr(ηM ): if |usr(ηe)| < |usr(ηM )|, then ηM ← ηe; otherwise ηM is left unchanged. When ηM = ε,
we do not perform the comparison between the cardinalities of usr(ηe) and usr(ηM ) and simply set ηM
to ηe. Indeed, when all eligible scenarios in E have been considered, usr(ηM ) stores a minimal user base.
This process requires that there are O(`max · |E|) invocations to the algorithm for checking membership



of a user-task pair to TA. Although the complexity bounds of solving the B-SFP and the MUB-SFP are
identical, the bound for the latter is tighter than the former. This is so because we always need to consider
all eligible scenarios inE for the MUB-SFP whereas we can stop as soon as we find an authorized scenario
for the B-SFP. This is confirmed by our experimental evaluation in Section 5 (compare the timings for
solving SFPs with those for MUB-SFPs in Table 2).

3.3. Resilient scenarios

Resiliency in workflow systems concerns the question of whether a workflow is still satisfiable even
if a number of users is absent for an instance execution. It is an important property of workflows and
authorization relations, since it indicates the likelihood of the workflow terminating even in adverse
conditions.

There are several possible definitions of resiliency. The most obvious one is to fix a set Ua of absent users
and check if the workflow can terminate. This can be easily reduced to a B-SFP problem by eliminating
all those execution scenarios in W (T,U) in which at least one task is executed by an absent user and
by removing all pairs containing an absent user in Ua from the authorization policy TA. If the resulting
B-SFP has a solution, then it can be considered as a witness of the fact that the workflow W (T,U)
is resilient to the absence of the users in Ua. Another, more interesting, notion of resiliency has been
proposed in [37] and amounts to checking whether a workflow is resilient to the absence of all subsets of
users of a fixed size k. This means that no matter which concrete users are absent, as long as no more
than a given number is absent (at any given time), the workflow remains satisfiable. We adapt this idea of
resiliency to our context by identifying resilient sets of execution scenarios as follows.

Definition 3.3 (Statically k-resilient set of scenarios). Given a workflow W (T,U), an authorization
relation TA, and an integer k > 0, a set of scenarios H is statically resilient up to k absent users if and
only if for every subset U ′ of U of size t = |U | − k, there is (at least) one scenario η ∈ H that satisfies
W (T,U) under TA|U ′ .

Notice that resiliency is defined up to k since a k-resilient set of scenarios is clearly also (k−1)-resilient.
Notice that it is not possible to limit resiliency to a single scenario because the second notion of resiliency
discussed above must hold for all subsets of users of size t and this implies that if any one of the users u
in a scenario η is removed, then η can no more be executed until the end. Instead, by considering a set H
of execution scenarios, when we consider a certain subset U ′ of absent users of size t, we can hope to find
a scenario in H containing no user in U ′ that can still be executed until the end.

We are now ready to introduce the problem of finding sets of resilient scenarios.

Definition 3.4 (Statically k-Resilient Scenario Finding Problem (SkR-SFP)). Given the set E of eligible
scenarios according to a set C of authorization constraints in a workflow W (T,U) and an integer k,
return (if possible) a set H of scenarios η which are authorized according to a given relation TA and
statically resilient up to k absent users.

Example 3.3. Let us consider again the TRW together with the set U of users, the set E of eli-
gible scenarios, and the authorization relation TA of Example 3.1. In that case, there is no solu-
tion to the SkR-SFP, even with k = 1, because if Charlie is removed from U , there is no user
authorized to perform t3 and if Alice or Bob are removed the same user has to perform t1 and
t2, which violates the SoD constraint. Now consider the same workflow and set of users, but with



TA′ = TA ∪ {(Charlie, t1), (Charlie, t2), (Alice, t3)}. In this case, a solution to the SkR-SFP, with
k = 1 is H = {η1, η2, η3, η4, η5} where

η1 = t1(Charlie), t2(Bob), t3(Charlie), t4(Dave), t5(Erin)

η2 = t1(Charlie), t2(Alice), t3(Charlie), t4(Dave), t5(Erin)

η3 = t1(Alice), t2(Bob), t3(Alice), t4(Dave), t5(Erin)

η4 = t1(Bob), t2(Alice), t3(Charlie), t4(Alice), t5(Erin)

η5 = t1(Charlie), t2(Alice), t3(Charlie), t4(Dave), t5(Bob) .

Notice that η1 is satisfiable when U ′ = {Alice}, η2 is satisfiable when U ′ = {Bob}, η3 is satisfiable
when U ′ = {Charlie}, η4 is satisfiable when U ′ = {Dave}, and η5 is satisfiable when U ′ = {Erin}. All
scenarios are also satisfiable when U ′ = {Frank}, because Frank is not used in any of them. Even with
the new authorization relation TA′ the workflow is not 2-resilient, because if, e.g., Alice and Charlie are
removed from the set of users, again there is no user capable of executing t3.

To solve the SkR-SFP, an obvious strategy is to initialize the set H of k-resilient execution scenarios to
the empty set, generate all subsets of users with size t = n− k (for n the total number of users), update
the authorization policy TA by removing the k absent users, and then compute a solution of the resulting
B-SFP. If such a scenario exists, we add it to the set H . Indeed, enumerating all subsets of size t of a set
of n elements is equal to the binomial coefficient

(
n
t

)
. Thus, we would need O(n!) calls to a procedure

solving the B-SFP in the worst case (or close to nt when t is small compared with n [24]). It is possible to
reduce the number of sets that must be considered by observing (as done in [24]) that some sets of users
can be ignored as they are “dominated” by others with respect to the set of tasks that they can execute. We
will make this precise in Section 4.3 below.

Another interesting problem is to find the maximal value kmax such that there is a set H of scenarios
that are authorized according to a relation TA and resilient up to kmax . A possible way to attack this
problem is to use a procedure solving SkR-SFP to find a set H of resilient scenarios for a value k∗ = 1.
If there is a solution, we increase the value of k∗ by one and invoke again the procedure to solve the
Sk∗R-SFP. We keep increasing the value of k until no more solutions are found and set the value of kmax

to k∗− 1. Since there are at most |U | users, the search for kmax eventually terminates. In case the set U of
users is large, the search may go through several iterations, each requiring the invocation of the procedure
solving the SkR-SFP. A better solution is to first find an upper bound to kmax by preliminarily finding
a solution m to the MUB-SFP. Then, an upper bound on kmax is given by k∗max = |U | −m as it is not
possible to complete the workflow with less than m users. Afterwards, we invoke the procedure to solve
the SkR-SFP with k = k∗max . If the problem is solvable, then we return such a value as k∗max ; otherwise,
we decrease k by one and invoke again the procedure solving the SkR-SFP. In the worst case (i.e. when
the workflow is 0-resilient), the procedure to solve the SkR-SFP will be invoked m times; this indeed
implies termination.

Another problem extension is how to achieve k-resiliency while minimally changing the authorization
policy, i.e. adding as few (u, t) pairs as possible to TA. Adding (u, t) pairs can be done with, e.g.,
delegation or an administrative policy such as ARBAC [32]. A solution to this problem is left as future
work.



3.4. Constrained scenarios

The three problems (B-SFP, MUB-SFP, and SkR-SFP) introduced above accept as solutions uncon-
strained scenarios, i.e. scenarios where any authorized user can execute any task and any allowed control
path can be taken (e.g., any interleaving of parallel tasks is possible and any branch of a conditional
is equally likely to be executed). Sometimes, policy designers may be interested in finding scenarios
satisfying certain properties, e.g., scenarios in which only certain authorized users can execute certain
tasks or some control-flows can be executed. For instance, the designer may want to investigate scenarios
in which the test of a conditional evaluates to true or in which only certain users perform some tasks. We
use constraints to specify the properties that scenarios must additionally satisfy in the constrained versions
of the three problems above. The constraints specified by the designer are represented as predicates and
are collected in a set Γ.

We are now in the position to generalize the B-SFP problem by defining its constrained version as
follows.

Definition 3.5 (Constrained Scenario Finding Problem (C-SFP)). Given the set E of eligible scenarios
according to a set C of authorization constraints in a workflow W (T,U) and a set Γ of constraints, return
(if possible) a scenario η ∈ E which is authorized according to a given relation TA and such that all the
predicates in Γ evaluate to true.

Example 3.4. Let us consider again the TRW together with the set U of users, the set E of
eligible scenarios, and the authorization relation TA of Example 3.1. A solution to the C-SFP
with Γ = {t2(Bob)} (requiring that Bob executes task t2 in any scenario) is the scenario η =
t1(Alice), t2(Bob), t3(Charlie), t4(Dave), t5(Erin).

Similar generalizations of the MUB-SFP and the SkR-SFP are possible, thereby obtaining their con-
strained versions that we call C-MUB-SFP and C-SkR-SFP, respectively. More precisely, a solution to the
C-MUB-SFP is a scenario that uses a minimal number of users and makes all the predicates in the set of
constraints evaluate to true. A solution to the C-SkR-SFP is a k-resilient set H of scenarios such that each
scenario in H makes all the predicates in the set of constraints evaluate to true.

As we will see in Section 4.2, the procedures used to solve the unconstrained versions of the scenario
finding problems can be lifted to solve also their constrained version.

4. From Solving the WSP to Solving SFPs

We now explain our approach to solve the three problems (B-SFP, MUB-SFP, and SkR-SFP) introduced
in Section 3. The procedure to solve the B-SFP (Section 4.2) is used as a sub-procedure in those tackling
the MUB-SFP (see again Section 4.2) and the SkR-SFP (Section 4.3). Preliminarily (Section 4.1), we
recall the technique in [6] to synthesize run-time monitors for the WSP. Besides creating monitors for the
WSP, this procedure is based on a (symbolic) model checking algorithm capable of generating a compact
data structure representing scenario graphs (recall the discussion in the Introduction) which allow us to
compactly encode all possible interleavings of tasks in a workflow. Both the run-time monitors and the
data structure representing scenario graphs are used by the procedure to solve the B-SFP.

The procedures to solve the constrained versions of the three scenario finding problems are illustrated
in Section 4.4.



id enabled action
CF Auth CF Auth

t1(u) p0 ∧ ¬dt1 at1(u) p0, p1, p2, p3, dt1 := F, T, T, T, T ht1(u) := T
t2(u) p1 ∧ ¬dt2 at2(u) ∧ ¬ht3(u) ∧ ¬ht1(u) p1, p4, dt2 := F, T, T ht2(u) := T
t3(u) p2 ∧ ¬dt3 at3(u) ∧ ¬ht2(u) p2, p5, dt3 := F, T, T ht3(u) := T
t4(u) p3 ∧ ¬dt4 at4(u) ∧ ¬ht1(u) p3, p6, dt4 := F, T, T ht4(u) := T
t5(u) p4∧p5∧p6∧

¬dt5
at5(u) ∧ ¬ht3(u) ∧ ¬ht2(u) p4, p5, p6, p7, dt5 := F, F, F, T, T ht5(u) := T

Fig. 2. TRW as an extended Petri net (top) and as a transition system (bottom)

4.1. Synthesizing monitors for the WSP

The technique in [6] is key to our approach as it provides us with a compact data structure to represent
the set of all eligible scenarios in a workflow, which is crucial for the design of an efficient solution to SFPs.
It takes as input the specification of a security-sensitive workflow (e.g., the BPMN in Figure 1 for the
TRW) together with the specification of an authorization policy (such as the relation TA of Example 2.2)
and consists of an off-line and an on-line step. In the former, the specification of a security-sensitive
workflow with a finite set T of tasks, a finite set U of users, and a finite set C of authorization constraints
is translated to a symbolic transition system S = (V,Tr) [34] where V is a finite set of state variables
and Tr is a finite set of transitions. The authorization policy TA is not taken into consideration in the
off-line step as the technique is capable of synthesizing a monitor for the WSP which is specialized to the
particular TA only in the on-line step. For concreteness, we illustrate how to translate the TRW in BPM
notation of Figure 1 into a symbolic transition system.

Example 4.1. Figure 2 shows the (extended) Petri net corresponding to the BPM Figure 1 and the
corresponding derived transition system S = (V,Tr). The semantics of the BPM notation has been given
in terms of Petri nets and it is well-known how to translate these into symbolic transition systems (for
more details and further references on these transformations, the interested reader is pointed to [6]). The
set V of state variables contains the (Boolean) control-flow variables pi and dti, where pi represents the
existence of a token in the place pi of the Petri net at the top of the same figure and dti represents the fact
that transition ti of the Petri net at the top of the same figure has been executed. Additionally, V contains
the authorization variables ati and hti that are (Boolean) arrays such that ati(u) means that user u is
entitled to execute task ti and hti(u) means that user u has executed task ti.

The transitions in Tr are listed in the table at the bottom of Figure 2 and are composed of three parts:
an id(entifier), an enabling condition, and an effect. To illustrate, consider the second line of the table:
the id indicates that user u executes task t2, the enabling condition is composed of two parts CF , which



stands for control-flow, and Auth , which stands for authorization. The enabling condition CF is the
conjunction of predicates p1 and ¬dt2 indicating that, for this event to be enabled, there must be a token in
place p1 of the Petri net (at the top of the same figure) and task t2 has not been executed yet. The enabling
condition Auth is the conjunction of predicates at2(u), indicating that the user requesting to execute this
task must be authorized to do so by the authorization policy (i.e. (u, t) ∈ TA), ¬ht3(u), indicating that
the user requesting to execute this task should not have executed task t3 (notice that t2 and t3 can be
executed in parallel, due to the gateway), and ¬ht1(u), indicating that the user requesting to execute this
task should not have executed task t1 (notice that the SoD constraint between t2 and t5 is not present in
t2(u) because t5 is always executed after t2). The effect is also divided in a CF and an Auth part. The
effect of executing t2 at the control flow level (CF ) is to remove a token from place p1 and put a token in
place p4 (formally, this is done by setting p1 to False and p4 to T rue, as well as recording the execution
of t2 by setting dt2 to T rue). The effect of executing t2 at the authorization level (Auth) is to update the
history function ht2 to record the fact that t2 has been executed by user u (formally, ht2(u) := T ).

The core of the off-line step of the technique in [6] is the computation of the data structure representing
scenario graphs. The symbolic transition system S is taken as input to a model checking procedure which
generates a (symbolic) reachability graph RG which represents all eligible execution scenarios. Formally,
RG = (N,λ,E) is a directed graph whose edges (in the set E) are labeled by task-user pairs in which
users are symbolically represented by variables (called user variables) and whose nodes (in the set N )
are labeled (according to the labeling function λ) by a symbolic representation (namely, a formula of
first-order logic) of the set of states from which it is possible to reach a state in which the workflow
successfully terminates (for the TRW, this is the set of states in which all five tasks have been executed).

The details of the construction of RG are given in [6]. Briefly, the procedure works as follows. Initially,
a node is created, labeled with a formula describing the set of final states in the execution of S, and added
to a set of nodes to be visited TBV . Then the procedure picks a node ν ∈ TBV and tries to apply each
possible transition τ to the formula φ labeling ν; if the application is successful, the procedure creates
a new node ν ′, labels ν ′ with φ′ (the formula resulting from the application of τ ), and connects ν ′ to ν
using a new edge labeled by τ and a fresh user variable. The procedure stops when it reaches a fixpoint,
i.e. when the application of new transitions leads only to states that have already been visited.

A sequence ηs = t1(υj1), ..., tn(υjn) of task-user pairs is a symbolic execution scenario where υji is a
user variable with 1 ≤ ji ≤ n and i = 1, ..., n. A well-formed path in RG is a path starting with a node
without an incoming edge and ending with a node without an outgoing edge.

The crucial property of RG is that the symbolic execution scenario ηs = t1(υj1), ..., tn(υjn) collected
while traversing one of its well-formed paths corresponds to an eligible (i.e. not violating any constraint
in C) execution scenario ηc = t1(µ(υj1)), ..., tn(µ(υjn)) for µ an injective function from the set Υ =
{υj1 , ..., υjn} of user variables (also called symbolic users) to the given set U of users of W (T,U).

Three observations are in order. First, µ is extended to symbolic execution scenarios in the obvious
way, i.e. by applying it to each user variable occurring in them. Second, since ji can be equal to ji′ for
1 ≤ i 6= i′ ≤ n, the cardinality of Υ is at most equal to the number n of tasks in the symbolic execution
scenario. Third, since µ is injective, distinct user variables are never mapped to the same user.

Example 4.2. An excerpt of the symbolic reachability graph for the TRW is depicted in Figure 3. The
graph is not complete and the formulae labeling the nodes are not shown in the figure for the sake of
simplicity.



# History Query Answer

0 ∅ can_do(a, t1) deny
1 - can_do(b, t1) grant
2 h(t1, b) can_do(c, t3) grant
3 h(t3, c) can_do(a, t4) grant
4 h(t4, a) can_do(b, t2) deny
5 - can_do(a, t2) grant
6 h(t2, a) can_do(b, t5) grant
7 h(t5, b) - -

Table 1
A run of the monitor program for the TRW
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Fig. 3.
An excerpt of the symbolic reachability graph for the TRW

The graph in the Figure is constructed as follows. First, the procedure creates node 1, labels it with the
formula

β1 := p7
∧

i=0,...,6

¬pi
∧

i=1,...,5

dti

representing the final state in the execution of the TRW (when there is just one token in p7 and all the tasks
have been executed), and adds 1 to the set TBV . Then, the procedure picks node 1 from TBV (it is the
only node in the set) and tries to apply transitions t1, ..., t5. Only t5 can be applied (due to the execution
constraints) and the result of its application is the formula

β2 :=

(
¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p4 ∧ p5 ∧ p6 ∧ dt1 ∧ dt2 ∧ dt3 ∧ dt4 ∧ ¬dt5∧
at5(υ1) ∧ ¬ht2(υ1) ∧ ¬ht3(υ1)

)
describing the set of states from which it is possible to execute t5: there should not be tokens in p0, ..., p3,
there should be tokens in p4, ..., p6, tasks t1, ..., t4 should have been executed, but not task t5 (first line),
there should be a user υ1 authorized to execute t5 and who has not executed neither t2 nor t3 (second
line). The procedure then creates node 2, labels it with β2, and connects node 2 to node 1 by creating an
edge labeled by t5(1). Node 1 is removed from TBV and node 2 is added to the same set. In the next step,
the procedure picks node 2 from TBV and tries to apply transitions t1, ..., t5 to β2. As shown in Figure 3
transitions t2, t3, and t4 can be applied, which leads to the creation of nodes 3, 4, 5, and 46. There are
two nodes for t4 because it can be executed by the same symbolic user who executes t5 or a fresh one,
since there are no constraints between t4 and t5; t2 and t3, on the other hand, must be executed by a
different user because of the SoD constraints. To continue the example, we show the formula

β3 :=

(
¬p0 ∧ p1 ∧ ¬p2 ∧ ¬p3 ∧ ¬p4 ∧ p5 ∧ p6 ∧ dt1 ∧ ¬dt2 ∧ dt3 ∧ dt4 ∧ ¬dt5∧
at2(υ2) ∧ ¬ht1(υ2) ∧ ¬ht3(υ2) ∧ at5(υ1) ∧ ¬ht3(υ1) ∧ ¬ht2(υ1) ∧ υ1 6= υ2

)



attached to node 3 of the graph, describing the set of states from which it is possible to execute t2.
Intuitively, β3 expresses the conditions for a user υ2 to be allowed to execute t2: the workflow (instance)
must be in a state where there are tokens in places p1, p5, and p6 while there are no tokens in places
p0, p2, p3, and p4 (first line), tasks t1, t3, and t4 have been already executed while tasks t2 and t5 have
not been executed (first line), user υ2 should be authorized to perform t2 and should not have executed
neither t1 nor t3 (second line), and there should exist a user υ1 (distinct from υ2) authorized to execute
t5 who should have executed neither t1 nor t3 (second line). The procedure continues until a fixpoint is
reached when trying to apply transitions in the leaf nodes 18, 19, 20, 21, and 24, which represent the
initial states in the execution.

Concerning the labels on the edges of the symbolic reachability graph, in Figure 3, a task-user pair
t(υk) labeling an edge is abbreviated by t(k) for the sake of compactness. So, for instance, the symbolic
execution scenario ηs = t1(υ3), t3(υ3), t4(υ2), t2(υ2), t5(υ1) (cf. the well-formed path identified by
the blue nodes in Figure 3) represents all those executions in which a symbolic user identified by υ3
first performs task t1 followed by t3, then a symbolic user identified by υ2 performs t4 and t2 in this
order, and finally a symbolic user identified by υ1 executes t5. If we apply an injective function µ from
the set Υ = {υ1, υ2, υ3} of user variables to any finite set U of users (of cardinality at least three),
the corresponding execution ηc = µ(ηs) is eligible according to the set C of SoD constraints shown in
Figure 1.

To conclude the off-line step, the technique derives a non-recursive Datalog program M (with negation)
from the symbolic reachability graph RG by generating a clause of the form can_do(υ, t)← βv for each
node v in the graph RG .

Example 4.3. To illustrate, consider again node 3 in the graph as done in Example 4.2. The Datalog
program M will contain the following clause:

can_do(t2 , υ2 )←¬p0, p1,¬p2,¬p3,¬p4, p5, p6, dt1,¬dt2, dt3, dt4,¬dt5,
at2(υ2),¬ht1(υ2),¬ht3(υ2), at5(υ1),¬ht3(υ1),¬ht2(υ1), υ1 6= υ2.

where the comma stands for logical conjunction.

We now describe the on-line step which consists of building a run-time monitor for the WSP by taking
into account the authorization policy TA. Technically, this is done by combining the Datalog program
M obtained in the off-line step with the Datalog program P specifying the authorization policy TA. The
combination of M and P is possible because of the following observation. As shown in Example 4.3, the
formula βv contains invocations to the binary predicates ati and hti. The former is the interface to the
authorization policy and it is such that at(u) holds iff (u, t) ∈ TA while the latter keeps track of which
user has executed which task, i.e. h(t, u) means that t has been executed by u. Following an established
tradition (see, e.g., [23]) claiming that (variants of) Datalog are adequate to express a wide range of
access control policy idioms, we assume the predicates at’s to be defined by the Datalog program P . The
predicate h is dynamic and defined by a set H of (ground) facts which is updated after each task execution.
Thus, if the query can_do(u, t) can be derived from M,P,H (in symbols, M,P,H ` can_do(u, t)),
then user u can execute task t and the workflow can terminate while satisfying the authorization policy
and the authorization constraints. We illustrate these ideas on the TRW.

Example 4.4. Figure 4 depicts the monitor program M for the TRW (obtained in the off-line step)
combined (in the on-line step) with an authorization policy P specified in Datalog (from a user-task



Fig. 4. Monitor for the TRW combined with an authorization policy and an execution history

relation TA) and an execution history H . The “holes” in M (ht1 , . . . , ht5 and at1 , . . . , at5 ) are “filled”
by the definitions in P and H . Thus, the combination M,P,H is used to answer the queries can_do(u, t).

Let us consider again the set of users and the authorization policy discussed in Example 2.2. The
relation TA can be specified after the Role Based Access Control (RBAC) model [33] by the Datalog
program P :

ua(a, r1). ua(a, r2). ua(a, r3). ua(b, r2). ua(b, r3). ua(c, r2).
pa(r3, t1). pa(r2, t2). pa(r2, t3). pa(r1, t4). pa(r2, t5).
at1(υ) ← ua(υ, ρ), pa(ρ, t1). at2(υ) ← ua(υ, ρ), pa(ρ, t2). at3(υ) ← ua(υ, ρ), pa(ρ, t3).

where r1, r2, and r3 are roles, ua is the user-role assignment (cf. first line of facts), pa is the role-
task assignment (cf. second line of facts), υ is a user variable, τ is a variable ranging over tasks, and
aτ is defined as the join of the relations ua and pa (cf. the Datalog clauses in the last line) for each
τ ∈ {t1, t2, t3}. Recall the definition of TA in Example 2.2 and notice that P ` at(u) iff (u, t) ∈ TA for
user u and task t.

An example run of the monitor derived from the symbolic reachability graph in Figure 3 combined with
the RBAC policy above is shown in Table 1: column ‘History’ shows which facts are added to the set H
and column ‘Answer’ reports grant (deny, respectively) when the query in column ‘Query’ can (cannot,
respectively) be derived from M,P,H . For instance, there are two denied requests: in line 0, user a
requests to execute task t1 but this is not possible since a is the only user authorized to execute t4, and if a
executes t1, he/she will no more be allowed to execute t4 because of the SoD constraint between t1 and t4
(see Figure 1); in line 4, user b requests to execute task t2 but again this is not possible since b has already
executed task t1 and this would violate the SoD constraint between t1 and t2. All other requests are
granted, as they violate neither task execution nor authorization constraints. The execution resulting from
this run of the monitor is t1(b), t3(c), t4(a), t2(a), t5(b), which is derived from the symbolic execution
t1(υ1), t3(υ3), t4(υ2), t2(υ2), t5(υ1) in the graph of Figure 3 (cf. the path with the blue nodes; see also
Example 4.2) by applying the injective function µ mapping υ1 to b, υ2 to a, and υ3 to c.

4.2. Solving the B-SFP and the MUB-SFP

Preliminarily, we need to decide how the set E of eligible scenarios and the authorization policy TA are
specified as input to the algorithm solving the scenario finding problems. For TA, we have already assumed



(see the discussion at the end of the previous section when describing the on-line step) the availability of a
Datalog program P defining the binary predicates at’s for each task t in the workflow. For E, we define
the set E(RG , U) of eligible scenarios induced by a symbolic reachability graph RG and a set U of users

as the collection of all the scenarios of the form µ(t1(υj1), ..., tn(υjn)) where v0
t1(υj1 )−→ · · ·

tn(υjn )−→ vn+1

is a well-formed path in RG and µ is an injective function from Υ = {υj1 , ..., υjn} to U .
Two observations are important. First, there are several different sets E(RG∗, U) induced by a fixed

symbolic reachability graph RG∗ and a varying set U of users. Second, a symbolic reachability graph—
once a set of users is fixed—provides an implicit and compact representation of the set of eligible scenarios.
This is due to two reasons: one is the sharing of common sub-sequences of task-user pairs in execution
scenarios and the other is the symbolic representation of several execution scenarios by means of a single
symbolic execution scenario. This is best illustrated by an example.

Example 4.5. Let us consider the TRW with a set U of 6 users. The graph in Figure 3 is, for the sake
of readability, an excerpt of the full symbolic reachability graph showing only a small sub-set of all
well-formed paths. The full graph has 46 nodes, 81 edges, and 61 well-formed paths of which 21, 34,
and 6 contain 3, 4, and 5, respectively, symbolic users. For instance, notice how the sub-sequence
t3(υ2), t5(υ1) is shared by 6 distinct (symbolic) execution scenarios induced by the well-formed paths
whose initial node is 24 (left of figure). Additionally, observe that, from the definition of E(RG , U) above,
in order to establish the number of all eligible paths when |U | = n, we just need to calculate how many
injective functions there are from a set of cardinality k to a set of cardinality n—which is known to be
J(n, k) = n(n− 1)(n− 2) · · · (n− k + 1)—for n = 6, k = 3, 4, 5, and take their sum. Thus, the set of
all eligible paths in our case is 21 · J(6, 3) + 34 · J(6, 4) + 6 · J(6, 5) = 19, 080. Compare this, with the
number of well-formed paths in the symbolic reachability graph which is only 61: the blow-up factor is
more than 300. Indeed, the increase is even more dramatic for larger sets of users.

We are now ready to describe our technique, depicted in Algorithm 1, to solve the B-SFP. For the time
being, let us ignore the additional input set Γ (by setting it to ∅); it will be explained in Section 4.4 below.
The main idea underlying Algorithm 1 is to adapt a standard Depth-First Search (DFS) search to explore
all well-formed paths in the reachability graph RG while checking that the scenario associated to the path
is indeed authorized by using the run-time monitor, synthesized in the on-line phase of the technique in [6]
(recall Section 4.1). Lines 1–2 are the standard initialization phase of a DFS algorithm in which all nodes
in RG (returned by the function Nodes) are marked as not yet visited. Lines 3–6 invoke the (modified)
DFS algorithm on each node without an incoming edge in RG (returned by the function NoIncoming)
until either all such nodes have been considered (this allows us to consider all well-formed paths) or
an authorized scenario (if any) has been found (line 7). Lines 8–19 show the (modified) DFS recursive
function which takes as input a node v and extends a sequence η of task-user pairs to an authorized
execution scenario (if possible). Line 9 marks as visited the node v under consideration and computes its
set OE of outgoing edges (returned by the function OutGoing). Line 10 checks whether the set of outgoing
edges of v is empty: if this is the case, then we have considered all task-user pairs in a well-formed path
and the sequence η containing them is an authorized execution scenario. If this is not the case, we have not
yet considered all task-user pairs in a well-formed path of RG and thus we need to consider the possible

continuations in OE . This is done in the loop at lines 12-16: an edge v
t(υ)−→ w in OE is selected (line 12),

it is checked if the node w is not yet visited and if the run-time monitor combined with the authorization
policy P can find a user u capable of executing the task t in label of the edge in OE under consideration
(line 13). The second check (namely, M,P,H `υ 7→u can_do(t, υ)) is done by asking a Datalog engine



to find a user u in U to which the user variable υ can be mapped (cf. superscript υ 7→ u of `) without
violating the execution and the authorization constraints together with the authorization policy specified
by P . If the test at line 13 is successful, line 14 is executed whereby a recursive call to the DFS function is

Algorithm 1. Solving the B-SFP

Input: RG symbolic reachability graph, U set of users, P Datalog program defining at’s, Γ set of facts
Output: η authorized execution scenario

1: for all v ∈ Nodes(RG) do visited[v]← false;
2: end for
3: η ← ε; NI ← NoIncoming(RG);
4: while (v ∈ NI and η = ε) do
5: η ← DFS(v, ε,Γ); NI ← NI \ {v};
6: end while
7: return η
8: function DFS(v, η,H)
9: visited[v]← true; OE ← OutGoing(v);

10: if OE = ∅ then return η
11: else
12: for all v

t(υ)−→ w ∈ OE do
13: if (not visited[w] and M,P,H `υ 7→u can_do(t, υ)) then
14: return DFS(w, append(η, t(u)), H ∪ {h(t, u)})
15: end if
16: end for
17: end if
18: return ε
19: end function

Algorithm 2. Solving the MUB-SFP

Input: RG symbolic reachability graph, U set of users, P Datalog program defining at’s, Γ set of facts
Output: η authorized execution scenario

1: for all v ∈ Nodes(RG) do visited[v]← false;
2: end for
3: η ← ε; ηM ← ε; NI ← NoIncoming(RG);
4: while v ∈ NI do
5: η ← DFS(v, ε,Γ); NI ← NI \ {v};
6: if (η 6= ε and ηM = ε) then
7: ηM ← η;
8: else if (η 6= ε and |usr(η)| < |usr(ηM )|) then
9: ηM ← η;

10: end if
11: end while
12: return ηM



performed in which the new node to consider is w, the sequence η of task-user pairs is extended with t(u)
(by invoking the function append), and the set H of facts keeping track of the tasks executed so far is also
extended by h(t, u). In case all edges in OE have been considered but none of them makes the check at
line 13 successful, the empty sequence is returned (line 18). Notice that at line 13, instead of enumerating
all suitable users in U to which υ can be mapped, we exploit the capability of the Datalog engine to find
the right user. This permits us to exploit well-engineered implementations of Datalog engines instead of
designing and implementing new heuristics to reduce the time taken to enumerate the users in U . This
concludes the description of the algorithm solving the B-SFP.

It is possible to modify Algorithm 1 following the idea discussed after Example 3.2 in order to solve
the MUB-SFP. This requires to avoid returning the authorized scenario as soon as we find one (removing
the condition η = ε in line 4) so that all well-formed paths in RG are considered. Moreover, a global
variable ηM is maintained in which a candidate scenario with a minimal user base is stored and updated
according to the strategy discussed above comparing the users occurring in ηM and those in the currently
considered scenario. As a result of these modifications, we obtain Algorithm 2 that is capable of solving
the MUB-SFP. The DFS function used in this algorithm is the same as the DFS function in Algorithm 1).

Complexity of Algorithms 1 and 2. The complexity of both algorithms can be derived from that of the
standard DFS algorithm, which is O(n+m) for n the number of nodes and m the number of edges, when
using an adjacency list to represent the graph. Notice that the most computationally intensive operation
is the invocation of the Datalog engine at line 13, which takes polynomial time as the only part that
changes over time is the set H of facts whereas the Datalog programs M and P are fixed; cf. the results
on data complexity of Datalog programs in [7]. It is easy to see that we invoke (at most) O(n + m)
times the Datalog engine for both algorithms (line 13 in Algorithm 1 and hidden in the DFS function in
Algorithm 2). This is much better than the upper bounds discussed in Section 3. To see this, consider
the situation in Example 4.5: `max = 5 and |E| = 19, 080 so that the check for authorization (modulo
constant factors) is invoked at most 95, 400 times whereas in Algorithm 1 (or its modified version for the
MUB-SFP) the same check is invoked at most n+m = 46 + 81 = 127 times.

4.3. Solving the SkR-SFP

As discussed in Section 3.3, a naive solution to the SkR-SFP requires the enumeration of all sub-sets
of the set of users of a given size. Indeed, this is very expensive from a computational point of view. To
alleviate this, it is possible to adapt an heuristic proposed in [24] and reduce the number of sets of a given
size to be considered. The idea is based on the notion of “dominance” which is defined in terms of which
tasks a given set of users can execute. If a set A1 of users can execute at least the same set of tasks that
a second set A2 of users can execute, then we say that A1 dominates A2 and the latter can be ignored
without loss of generality. This implies that if an instance of the SkR-SFP can tolerate the removal of
users in a set of absent users A1, then the problem instance can tolerate the removal of users in the second
set A2. This is why we can consider only the set A1 and safely disregard A2. Below, the set of users in the
authorization policy TA is {u | (u, t) ∈ TA} and the set Perms(u) of permissions associated to a user u
is {t | (u, t) ∈ TA}.
Definition 4.1 (Absent set domination). A user u1 in TA dominates a user u2 in TA iff Perms(u1) ⊇
Perms(u2). A set of (absent) users A1 dominates a set A2 of (absent) users iff there exists a bijection f
from A1 to A2 such that, for each user u in A1, u dominates f(u) in A2.

We are now in the position to adapt the result (Lemma 7) in [24] to avoid the enumeration of all sub-sets
of a given size while solving the SkR-SFP.



Lemma 4.1. Let E be a set of eligible scenarios according to a set C of authorization constraints
containing only SoD (i.e. ρ is 6= for each (t, t′, ρ) ∈ C) in a workflow W (T,U) and an integer k. If
A1, A2 ⊆ U , A1 dominates A2, and the SkR-SFP for W (T,U \ A1) is solvable, then the SkR-SFP for
W (T,U \A2) is also solvable.

Proof. (Sketch) Assume that A1 dominates A2 and the SkR-SFP for W (T,U \ A1) is solvable. The
former is equivalent to

Perms(u) ⊇ Perms(f(u)) for each u in U \A1 (1)

while the latter implies (by recalling the definition of solution to the WSP) that

∀t ∈ T, ∃u ∈ U \A1. (u, t) ∈ TA (2)

∀(t1, t2, ρ) ∈ C,∃u1, u2 ∈ U \A1. (u1, u2) ∈ ρ, (3)

where (2) states that each task in a scenario solving the WSP is performed by an authorized user and (3)
states that each authorization constraint is satisfied.

By (1), it is possible to show that if (2) holds (i.e. the problem is solvable after the removal of A1), it
also holds when replacing A2 with A1 (i.e. the problem is solvable after the removal of A2), because
A2 contains the same number of users of A1 (since f is a bijection) and each user in A2 has the same
permissions or less of the corresponding user (via the bijection f ) in A1 (a more detailed proof of this
property proceeds along the same line of that in Lemma 7 in [24]).

Unfortunately, it is not possible to show for an arbitrary set C of constraints that (3) implies (3) with A2

in place of A1. This is so because we can imagine a scenario where the users removed in A2, which are
different from those in A1, are necessary to fulfill some of the constraints in C. A somewhat contrived
example is a constraint requiring a task t2 to be executed by a user more senior, given a seniority relation
< inside an organization [11], than that who executes t1, and a less senior user u1 with more permissions
than a user u2, so that u1 < u2, but Perms(u1) ⊇ Perms(u2). Although u1 dominates u2, there may be
no user able to execute t2 due to the constraint. Fortunately, when C contains only SoD constraints, one
can observe that the bijection f from A1 to A2 maps distinct users into distinct users. As a consequence,
from an execution scenario solving the SkR-SFP for W (T,U \ A1), it is always possible to find an
execution scenario solving the SkR-SFP for W (T,U \A2).

Lemma 4.1 allows us to avoid enumerating all possible sub-sets of a given size when solving the
SkR-SFP by exploiting the dominance relation among sets of absent users in presence of SoD constraints
only. (Finding a generalization of the notion of dominance for arbitrary authorization constraints is left
as future work.) How this is done is shown in Algorithm 3. In line 1, the variable H which stores the
scenarios to be returned is initialized to the empty set. In line 2, the function NextSubset returns a new, i.e.
not previously generated, sub-set of size t = |U |−k of the set U of users and s stores the returned sub-set.
The NextSubset function is implemented as an iterator that returns only the next sub-set at each call, so
that it is not necessary to generate all subsets up front, which is very expensive from a computational
point of view. Most importantly, NextSubset implements the smart enumeration of sub-sets that are not
dominated by others according to Lemma 4.1 when the set C contains only SoD constraints. In line 3,
the Datalog program defining the at’s is updated by removing all assertions that include users not in the
current subset S (P |S), and in line 4 the SFP function (implemented as shown in Algorithm 1) is called to
find an execution scenario. If no scenario is found (line 5), an empty set is returned (line 6) and execution



halts. Notice that the execution must stop because the SkR-SFP is defined as finding a scenario for every
sub-set of size t in U . If a scenario is found (line 7), it is added to the set H (line 8); after this is done for
all sub-sets, NextSubset returns an empty set and the final H is returned (line 11).

4.4. Solving the C-SFP

So far, we have assumed that the set Γ of constraints taken as input of Algorithm 1 is empty. Here, we
consider the situation in which this is no more the case and show how Algorithms 1, 2, and 3 also solve
the constrained versions of the B-SFP, MUB-SFP, and the SkR-SFP.

Let us consider Algorithm 1 and how it solves a C-SFP by taking as input a non-empty set Γ of facts,
that can be used to drive the search for a scenario with particular characteristics. For instance, one can
be interested in authorized scenarios in which a certain user only, say u∗, executes a given task, say t∗.
It is possible to steer the search towards such scenarios by setting Γ to be the singleton containing the
fact h(t∗, u∗). Another use of Γ is guiding the search towards scenarios in which the tests of certain
conditionals of the workflows are either true or false. Again, it is possible to add the facts encoding that
particular control conditions are true or false to Γ in order to force Algorithm 1 to find scenarios taking
only particular execution branches.

A more interesting approach is to develop an interactive algorithm where after each step in the search
for a solution, the user of the algorithm is asked to enter his or her preferences to which user executes
which task and which is the next task to be executed. If he or she does not specify anything, the algorithm
picks an arbitrary user and task; otherwise the algorithm checks if the corresponding instance of the WSP
is solvable and, if the case, would allow the user to proceed with the exploration.

Since Algorithms 2 and 3 (i.e. the procedures to find the solutions to the MUB-SFP and to the SkR-SFP)
use Algorithm 1 as a sub-procedure, they straightforwardly inherit the capability to solve the constrained
versions of B-SFP and MUB-SFP.

Algorithm 3. Solving the SkR-SFP

Input: RG symbolic reachability graph, U set of users, P Datalog program defining at’s,
Γ set of facts, C set of authorization constraints, k ∈ N desired resiliency

Output: H set of authorized execution scenarios
1: H ← ∅;
2: while (S ← NextSubset(k,U) and S 6= ∅) do
3: P ′ ← P |S ;
4: η ← SFP(RG , U, P ′,Γ);
5: if η = ε then
6: return ∅;
7: else
8: H ← H ∪ {η};
9: end if

10: end while
11: return H;



Fig. 5. ITIL 2011—IT Financial Reporting (abbreviated ITIL)

Fig. 6. ISO9000—Budgeting for Quality Management (abbreviated ISO)

5. Validation of the Technique

We consider two real-world examples—called ITIL and ISO, shown in Figures 5 and 6—derived from
business processes available in an on-line library provided by Signavio,3 which contains models inspired
by the ISO9000 standard for quality management and the ITIL 2011 set of best practices for IT service
management.

ITIL. The goal of this workflow is to report costs and revenues of an IT Service. It is composed of 7
tasks and 2 SoD constraints. Tasks t1, t2, t3, t6 and t7 are for the checking and correction of bookings,
compilation of the financial report, and its communication; tasks t4 and t5 are for checking and defining
corrections. The execution of tasks t2 and t5 depends on the conditions associated to two exclusive
gateways: correct1? (abbreviated with c1) and correct2? (abbreviated with c2), respectively. The SoD
constraints forbid that the same user compiles a draft report and checks for errors (t3, t4, 6=) or compiles
the draft and defines the corrections (t3, t5, 6=).

ISO. The goal of this workflow is to plan for enough financial resources to fulfill some quality require-
ment. It is composed of 9 tasks and 3 SoD constraints. Tasks t1, t2, ..., t6 involve the detailed preparation
and consolidation of a draft budget, whereas tasks t7, t8 and t9 are for the approval of the previous
activities, the integration into the total budget, and the communication of the results. The execution of
tasks t8 or t9 depends on the exclusive gateway approved? (abbreviated with appr). The SoD constraints
forbid that the same user prepare and consolidate a budget (t1, t6, 6=), prepare and approve a budget
(t1, t7, 6=), or consolidate and approve a budget (t6, t7, 6=).

Although none of the workflows comes with an authorization policy, swimlanes (not shown in Figures 5
and 6) suggest that a controlling manager executes tasks t1, t2, t3, t6 and t7 while a financial manager
executes tasks t4 and t5 for ITIL and that a quality manager executes tasks t1, ..., t6 and a controlling

3Available at http://www.signavio.com/reference-models/

http://www.signavio.com/reference-models/


manager executes tasks t7, t8 and t9 for ISO. These indications are taken into consideration for designing
the authorization policies (based on the RBAC model and encoded in Datalog) in various scenarios with a
fixed set U of 9 users when solving the B-SFP, the MUB-SFP, and their constrained versions. For TRW,
we consider two policies P0 and P1: the former is that in Example 4.4 and the latter is derived from the
former in such a way that no user is authorized to execute t1 (thus no authorized scenario should be found).
For ITIL, we have policies P2 and P3, each one with 3 users as financial managers, 3 users as controlling
managers, and 3 with both roles; P3 is derived from P2 by preventing users to be able to execute task t6.
For ISO, we consider policies P4 and P5, each one with 3 users assigned to the role of quality manager, 3
users as controlling managers, and 3 users assigned to both roles; P5 is derived from P4 by preventing
users to be able to execute task t3.

Before invoking our algorithms for solving the SFPs, we need to build the symbolic reachability graph
(and the run-time monitor) for each example. We did this by running the implementation of the off-line
step (described in Section 4) from [6]. For TRW, the symbolic reachability graph is computed in around a
second and contains 46 nodes with 81 edges. For ITIL, the graph is computed in around 3.5 seconds and
has 78 nodes with 72 edges. For ISO, graph building takes around 10.5 seconds and has 171 nodes with
669 edges. These timings, as well as all those that follow below, have been obtained by using a MacBook
Air 2014 with Mac OS X v10.10.2. The time for deriving the monitor M from the symbolic reachability
graph of each example is negligible and thus omitted.

We have implemented Algorithms 1, 2, and 3 (described in Section 4.2) in Python v2.7. The invocation
to the Datalog engine at line 13 in Algorithm 1 (and reused in the other algorithms) is implemented with
the Datalog engine pyDatalog v0.15.2.

Table 2 shows the findings of our experiments for the B-SFP, MUB-SFP, and C-SFP. Each entry in
column ‘Instance,’ describing the input to Algorithm 1 (or its modification to solve the MUB-SFP), is
of the form W + Pi where W is the identifier of one of the three security-sensitive workflows and Pi is
one of the authorization policies described above. Column ‘Γ’ shows the facts in the set Γ that can be
used to drive the search of execution scenarios with particular properties. For instance, ITIL contains two
exclusive gateways labeled with conditions c1 and c2: we may be interested in those scenarios in which c1
and c2 take some particular truth values (see lines 1–4 and 12–15 of the table). Another use of the set
Γ is shown at line 8: we are interested in finding authorized scenarios of TRW under the authorization
policy P0 in which task t2 is always executed by user b. There is no such scenario (the ‘Solution Scenario’
column reports the empty sequence ε) since when b performs t2, a must perform t1—because of the SoD
constraint (t1, t2, 6=)—but if a performs t1, no user can perform t4—because of the other SoD constraint
(t1, t4, 6=). Column ‘Time’ reports the running time (in seconds) taken to find a scenario (if any).

We report the performance of the implementation of Algorithm 3, to solve instances of the SkR-SFP
on the TRW, ITIL, and ISO workflows in Table 3. Column ‘Instance’ shows the workflows used in the
experiments. Each one of the columns ‘Time’ reports the time taken (in seconds) to find a solution for
k = 2, k = 4, k = 6, and k = 8. The experiments have been run with three policy configurations,
containing n = 9, n = 18, and n = 27 users in U (indicated with |U | = n in the table). The performance
results are for the version of the algorithm using the sub-set enumeration optimization (discussed in
Section 4.3), since all the workflows used in the experiments contain only SoD constraints. We do not
report the performance without the optimization because it is unsuitable.

Discussion. Our experiments indicate that the SFPs, their constrained versions, and the algorithms
for solving them introduced in this paper fit well with emerging practices for BPM reuse. Whenever a
customer wants to deploy a business process by reusing a workflow template, some SFP is solved (if
possible) to provide him or her with an authorized scenario showing that a template business process can



Table 2
Experiments for the B-SFP, MUB-SFP, and C-SFP

# Instance Γ Solution Scenario Time

B-SFP
0 TRW+P0 ∅ t1(b), t2(a), t4(a), t3(c), t5(b) 0.288
1 ITIL+P2 {c1, c2} t1(u3), t3(u9), t4(u8), t6(u9), t7(u9) 4.267
2 ITIL+P2 {c1,not c2} t1(u3), t3(u3), t4(u7), t5(u8), t6(u3), t7(u7) 4.454
3 ITIL+P2 {not c1, c2} t1(u3), t2(u1), t3(u9), t4(u8), t6(u9), t7(u9) 4.374

4 ITIL+P2 {not c1,not c2} t1(u3), t2(u1), t3(u3), t4(u7),
t5(u8), t6(u3), t7(u7)

4.561

5 ISO+P4 {appr} t1(u3), t4(u7), t5(u8), t2(u3), t3(u7),
t6(u9), t7(u7), t9(u8)

6.581

6 ISO+P4 {not appr} t1(u3), t4(u7), t5(u8), t2(u3), t3(u7),
t6(u7), t7(u8), t8(u6)

6.637

7 TRW+P1 ∅ ε 0.407
8 TRW+P0 {t2(b)} ε 1.554
9 ITIL+P3 ∅ ε 9.562
10 ISO+P5 ∅ ε 44.076

MUB-SFP
11 TRW+P0 ∅ t1(b), t2(c), t3(b), t4(a), t5(a) 2.385
12 ITIL+P2 {c1, c2} t1(u1), t3(u1), t4(u7), t6(u1), t7(u1) 108.819
13 ITIL+P2 {c1,not c2} t1(u3), t3(u3), t4(u7), t5(u7), t6(u3), t7(u3) 116.525
14 ITIL+P2 {not c1, c2} t1(u1), t2(u1), t3(u1), t4(u7), t6(u1), t7(u1) 108.827

15 ITIL+P2 {not c1,not c2} t1(u3), t2(u3), t3(u3), t4(u7),
t5(u7), t6(u3), t7(u3)

116.533

16 ISO+P4 {appr} t1(u5), t3(u5), t2(u5), t4(u5), t5(u5),
t6(u3), t7(u7), t9(u7)

166.632

17 ISO+P4 {not appr} t1(u5), t3(u5), t2(u5), t4(u5), t5(u5),
t6(u9), t7(u6), t8(u9)

166.644

Table 3
Experiments for the SkR-SFP

# Instance Time (k = 2) Time (k = 4) Time (k = 6) Time (k = 8)

|U | = 9

0 TRW 2.612 3.209 3.990 0.504
1 ITIL 3.606 6.012 7.416 1.308
2 ISO 10.815 12.034 13.820 26.254

|U | = 18

3 TRW 91.606 95.892 109.895 226.074
4 ITIL 114.128 159.105 161.935 165.059
5 ISO 107.864 135.725 197.564 207.941

|U | = 27

6 TRW 680.767 712.977 815.842 841.445
7 ITIL 1252.796 1370.184 1410.400 1637.548
8 ISO 702.154 1179.483 1557.616 2185.207



be successfully instantiated by his or her authorization policy. The efficiency of the proposed approach
exploits the fact that the eligible scenarios (resulting from execution and authorization constraints) can
be computed once and reused with every authorization policy. In this way, multiple changes to a policy,
which are well-known to be costly [25], become much less problematic to handle and customers can
even explore and evaluate the suitability of variants of a policy. This is in sharp contrast to the approach
discussed in Section 3 (after Example 3.1) that consists of re-invoking an available algorithm for solving
the WSP on every task-user pair in a scenario. To illustrate, consider the instance at line 4 of Table 2.
Recall that the off-line step for ITIL takes around 3.5 seconds and observe that this is computed once
and for all. If, instead, we use the technique to solve the WSP in [6] as a black-box (i.e. without being
able to retrieve the symbolic reachability graph computed during the off-line phase), which is common to
(almost) all techniques available in the literature, solving the same B-SFP would require almost 30 seconds
resulting from re-computing 7 times (corresponding to the 7 task-user pairs in the returned scenario) the
same symbolic reachability graph (compare this with the timing of 4.561 seconds reported in the table).
This is a significant performance gain despite the small size of the example.

For each workflow, the times shown in Table 3 grow with the number of users (|U |) and desired
resiliency (k) for two reasons. First, there are more absent subsets to be considered. Second, finding a
scenario for each subset takes longer, since the time to answer Datalog queries depends on the number
of users. For a combination of many users and a large resiliency, the time taken may be unacceptable,
which is inherent to the complexity of the problem. In any case, the observation above about reusing the
pre-computed symbolic reachability graph is even more important for the SkR-SFP. If the graph was not
reused, it would have to be computed from scratch for each user-task pair of each absent subset. For the
SkR-SFP, the optimization based on absent set domination is crucial for acceptable performance. As an
example, in line 2, column ‘k = 2’, the reported time (10.815) is obtained considering only 3 dominant
subsets of users, out of a total of

(
9
2

)
= 36. If the 36 subsets are considered, the total time is 107.724. This

difference is even larger for instances with more users or a larger k. Another advantage of Algorithm 3
is that it stops as soon as a concrete scenario is not found for a subset (line 6 in the algorithm). Notice
that the times in column ‘k = 8’ of lines 0 and 1 are less than the time in columns ‘k = 2’, ‘k = 4’, and
‘k = 6’ of the same lines, since those instances are not 8-resilient. The instance in column ‘k = 8’ of line
3 is also not resilient, but the algorithm took much longer to encounter a subset with no concrete scenario.

6. Discussion

We have introduced four SFPs, discussed their relationships with the WSP, and argued that solving them
supports the deployment of business processes in the activity of model reuse. Then, we have described
algorithms to solve the four SFPs, based on a previously proposed technique [6] for the synthesis of
monitors for the WSP. An experimental evaluation on real-world examples has shown that our techniques
can be used in practice at deployment time since they perform the computationally heaviest part (namely,
computing the set of eligible scenarios) once and for all when the workflow is designed (and possibly
added to a library of business processes) and reuse it with arbitrary authorization policies.

6.1. Related work

WSP and Scenario Finding. Bertino et al. [5] were the first to present a method capable of computing
execution scenarios by using logic programming techniques. The practical feasibility of the approach was
not assessed as we did for our technique in Section 5. Kohler and Schaad [21] introduced the notion of



policy deadlocks (corresponding to situations in which the WSP is unsolvable) and proposed a graph-based
technique to compute minimal user bases to help policy designers to avoid such situations. There are some
similarities with our approach such as the use of symbolic users, but our work is not limited to RBAC
policies as theirs and focuses on business process reuse, which was not considered in [21]. Solworth [35]
used an approvability graph to describe sequences of actions defining the termination of a workflow.
His technique focused on linear workflows, whereas we support constructs for parallel executions and
conditionals.

Many other works provided solutions to the WSP. Crampton [10] considered workflows as partial orders
and showed an algorithm to determine whether there is an execution scenario. Wang and Li [37] reduced
the WSP to SAT and showed that it is NP-hard even in the presence of simple constraints. Crampton et
al. [15] improved the complexity bounds for the WSP and generalized the constraints supported by their
solution. Crampton et al. [16] used model checking on a fragment of linear temporal logic to compute
execution scenarios, minimal user bases, and a safe bound on resiliency. Yang et al. [31] studied the
complexity of the WSP with different control-flow patterns and showed that, in general, the problem is
intractable. Basin et al. [4] defined and solved the problem of choosing authorization policies that allow a
successful workflow execution and an optimal balance between system protection and user empowerment.
As discussed above, most of these solutions cannot be used to solve the SFPs without an unacceptable
decrease in performances because they are not able to pre-compute the set of eligible scenarios.

The works in [3,8] separated between an off-line and on-line phase as done in this work and [6] but it
was not exploited for business process reuse as we did.
Resiliency. Li et al. [24] introduced the notion of resiliency policies in the context of access control
systems, i.e. policies that require the access control system to be resilient to the absence of users. Their
work was inspired by the need of forming teams that, even in emergency situations, are able to access all
resources in a common pool. They also defined the Resiliency Checking Problem (RCP), which amounts
to checking if an access control state satisfies a given resiliency policy. Wang and Li [37] then studied
resiliency in workflow systems by identifying three types: static, when users can become absent only
before the beginning of the execution of a workflow and stay available during execution; decremental,
when users may become absent before or during the workflow instance execution but they cannot become
available until the workflow execution is terminated; and dynamic, when users can become absent and
available at any given time before and during the execution of the workflow. In [37], Wang and Li
studied the relationship between these notions of resiliency and the WSP and showed that checking static
workflow resiliency is in NP, whereas checking decremental and dynamic resiliency is in PSPACE. The
authors of [37] observed that there are other possible formulations of resiliency that can be of interest.
For instance, Mace et al. [26] defined quantitative workflow resiliency, whereby a user wants to know
how likely a workflow instance is to terminate. They used specific user availability models based on
Markov Decision Processes (MDPs) in which probabilities measure the likelihood that users are available
or absent. Mace et al. proposed a method to solve the problem of finding optimal execution scenarios
guaranteeing the termination of workflows. Additionally, in [29], the same authors discussed the effects of
alternative execution paths on resiliency. This leads to the possibility of a different resiliency value for
each path. They defined resiliency variance as a metric to indicate volatility from the resiliency average,
claiming that a higher variance increases the likelihood of workflow failure. User availability models were
discussed in more details in [27], categorized into non-deterministic, probabilistic and bounded and with
several encodings for the PRISM (probabilistic) model checker.4 The same authors also studied the impact

4http://www.prismmodelchecker.org/
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of policy design on workflow resiliency computation time in [28], observed that adding or removing
authorization constraints has a substantial impact, and described a way to compute the set of security
constraints that can be added to a policy in order to reduce the computation time while maintaining
resiliency. Crampton et al. [13] studied the Bi-Objective WSP, which is the problem of minimizing two
weight functions associated to a valid execution scenario. In particular, they considered the following pair
of weight functions: one representing the violation of constraints and one representing the violation of
the authorization policy. This problem does not have a single solution, but a set of solutions known as a
Pareto front, which cannot be compared, and users are left with the burden of choosing the most suitable.
Crampton et al. also related this problem to workflow resiliency, claiming that Mace et al.’s translation to
MDP is not necessary since the same metrics can be computed by constructing a graph where the nodes
are partial valid execution scenarios, and the edges, connecting successive scenarios, are labeled with the
probability of a user being available to execute the next task (checking every possible partial scenarios has
exponential-time complexity). The Bi-Objective WSP is a generalization of the Valued WSP [12], which
has as single objective minimizing the sum of both weights.

Crampton et al. [14] reduced the RCP to the WSP and showed how to solve it using a fixed-parameter
tractable algorithm for the latter. The RCP differs from the problem of workflow resiliency by considering
more parameters (see [37] for details). On the other hand, the RCP is always static, whereas workflow
resiliency can be static, decremental, or dynamic. The basic solution in the original paper about RCP [24]
is to enumerate all subsets of s users and check for satisfiability (using a solution for s = 0 as a black-box),
but the authors presented a pruning strategy based on set domination, to have a more efficient solution.
Crampton et al. [14] solved the same RCP problem, using the same pruning strategy and then using their
FPT algorithm as this black-box to decide satisfiability (by translating the resources in P to a workflow).
The solution of Section 4 is similar, with the difference that we invoke the available monitor for solving
the WSP as a black-box algorithm. The authors of [14] also mentioned that this basic reduction cannot be
applied directly to decremental or dynamic workflow resiliency, but they point to their work on Valued
WSP [12] as a possibility to do it, by using weights to represent the availability of users.

6.2. Future work

As a first step, we intend to study how to support other forms of resiliency (namely, decremental
and dynamic) by extending our approach. We also intend to design new heuristics to support other
classes of constraints efficiently in the solution to the SkR-SFP. Afterwards, we identify the following
ideas to stimulate further work on the topic of scenario finding techniques to support the deployment of
security-sensitive workflows.
Tool integration. Currently, the implementation used to produce the experimental results reported in
Section 5 uses a command-line interface where users can run each of the problems on a given workflow
specification and policy file. We have developed a tool to generate enforcement monitors for workflow
management systems and store them in a repository (along with the reachability graph). The tool was
integrated with one of SAP’s platforms for BPM [9]. We would like to integrate the solution to the SFPs
into this tool by providing a graphical user interface allowing users to retrieve the workflow and associated
reachability graph from the repository, specify a policy, select the desired problems and visualize the
solutions in an intuitive way.
Policy synthesis. Another interesting problem to consider is how to automatically synthesize, or suggest
changes to existing, authorization policies so that solutions of an SFP are optimal with respect to some
criteria, e.g., least privilege [20] or cost/risk [4]. This is related to the Bi-Objective WSP introduced



in [13] and briefly discussed above. Using our approach, weights could be associated with each edge in
the reachability graph and then instantiate symbolic users in all possible ways (i.e. according to injective
functions) so that standard graph search algorithms for finding minimum weight paths can compute
optimal solutions. Unfortunately, this naive approach does not scale to medium or large number n of users
as the injective functions to be considered grow as the factorial of n. It would thus be interesting to study
situations in which the graph can be pruned to achieve sub-optimal solutions.
Run-time adaptation. Two assumptions are very common in the workflow satisfiability and resiliency
literature. First, that the control-flow and authorization constraints do not change at run-time. Second,
that only humans can be absent during the execution of a workflow, whereas external applications for
automated tasks are always available. These are abstractions from real-world executions and we intend to
investigate how to solve the SFPs on weaker versions of these assumptions. Considering arbitrary changes
to control-flow at run-time is not feasible, but we would like to allow “controlled” deviations, as in [1] and
pre-compute eligible scenarios for each of the allowed deviations. User availability models [27] could be
adapted to model the availability of external applications and consider resiliency to other kinds of failures.
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