
A Validation Model of Data Input for Web Services

Rafael Bosse Brinhosa, Carla Merkle Westphall, Carlos Becker Westphall, Daniel Ricardo dos Santos, Fabio
Grezele

Post Graduate Program in Computer Science
Federal University of Santa Catarina

Florianópolis, Brazil
{brinhosa,carlamw,westphal,danielrs,fgrezele}@inf.ufsc.br

Abstract— Web services inherited many well-known security
problems of Web applications and brought new ones. Major
data breaches today are consequences of bad input validation
at the application level. This paper presents a way to
implement an input validation model for Web services which
can be used to prevent cross-site scripting and SQL injection
through the use of predefined models which specify valid
inputs. The proposed WSIVM (Web Services Input Validation
Model) consists of an XML schema, an XML specification, and
a module for performing input validation according to the
schema. A case study showing the effectiveness and
performance of this mechanism is also presented.

Keywords—security; Web service; input validation; SOA

I. INTRODUCTION

Different technologies for collaboration and information
sharing are emerging and therefore new forms of interaction
are evolving and creating new requirements for the
development of distributed applications. Enterprises are
experiencing increased collaboration and information sharing
and a greater need for the use of distributed and
computational resources [1].

The paradigm of Services Oriented Architecture (SOA)
has transformed the Internet from a data repository to a
services repository [2]. In SOA style, an application is
composed of reusable services that are integrated through
standardized interfaces.

Web services technology based on the use of open
standards facilitates information exchange, interoperability,
and software reuse, and is therefore considered a major
component of SOA. Web services are software components
that can be discovered and used to implement applications.
Web services are suitable to integrate heterogeneous systems
because they make extensive use of XML (Extensible
Markup Language) [3]. The Web service interface, for
example, is described using a language based on XML,
called WSDL (Web Services Description Language).
Furthermore, communication among parts of a distributed
application is carried out using SOAP (Simple Object Access
Protocol) messages which are XML-based.

The Internet makes many Web services available for use:
it is possible to obtain information about the weather, stock
exchange, and postal codes [4] or to provide information to
the federal government [5].

While the SOA paradigm provides cost savings by
eliminating redundant efforts through software reuse,
security is a major concern according to the Gartner
Research Institute [6].

To implement security in Web services, various
standards and specifications have been created. However, the
correct use of standards alone does not guarantee that the
right level of security will be achieved [7]–[9].

A report by the SANS Institute (SysAdmin, Audit,
Network, Security) [10] lists the major risks to cybersecurity,
and the OWASP community (Open Web Application
Security Project) [11] states that validation of data input can
be one of the most effective controls for Web applications
security.

The validation of data input [12] [13] is a set of controls
that an application should carry out on the lexical and
syntactic aspects, type checking, integrity, and origin of data.
The lack of these controls has become a major problem for
software because interfaces exposed to the Internet could be
easily exploited by malicious users.

Thus, in the SOA and Web services environment,
improving security mechanisms by the use of more robust
data validation has become essential [11] [13].

This paper proposes a model for validation of data input
in Web services, providing protection against attacks based
on malicious input. The proposed model is called WSIVM
(Web Services Input Validation Model), and is an input
validation mechanism composed of an XML schema, an
XML specification, and a validation module.

This paper is organized in the following sections: Section
2 presents the related works, Section 3 describes the security
problems of Web services, Section 4 presents the proposed
model, WSIVM, Section 5 describes the implementation, a
case study is shown in Section 6, and Section 7 presents the
conclusions of the paper.

II. RELATED WORK

The lack of input validation is a major cause of Web
application attacks [11] [13] [14], whether these applications
are developed with Web services or with other technologies.
This happens because the lack of input validation of data
allows multiple attacks listed in [10] [15] to occur. Among

87Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

the attacks that can be cited are the injection of malicious
code by use of SQL (Structured Query Language) and cross-
site scripting (XSS), which allows code execution (scripts) in
the client-side browser to perform malicious actions [15].

Many studies have been undertaken to ensure input
validation in Web applications, such as Microsoft Anti-Cross
Site Scripting Library [16] and the use of Open Source
solutions in PHP. However, there are few specific
mechanisms for Web services.

Regarding the implementation of security mechanisms
for Web services, the MIT (Massachusetts Institute of
Technology) has an implementation called WS-Security
Wrapper [17], which is an intermediate between the Web
service and the client that carries out validation of certain
aspects. However, this work was developed to be compatible
only with Web services developed on the platform
Microsoft.Net v1.1 and does not include features such as
validation of predefined data entries.

Wu and Hisada [18] have proposed a token based
metadata to validate semantic notation built on top of ESB
(Enterprise Service Bus). This approach uses a different
method for input string validation using the ESB for
implementing SOA security.

A reusable and independent mechanism for data input is
very important in the process of creating a secure Web
service. The mechanism proposed in this paper, WSIVM,
assists in this task differently from other studies examined.
First, because it focuses on the aspect of handling of data
input, it differs from IAPF (Integrated Application and
Protocol Framework) [19], which seeks to address all the
security aspects related to Web services. Moreover, other
works [3] [20] have focused on the use of existing
technologies such as XML encryption to ensure the security
of Web services but do not mention input validation.

With respect to input validation aspects in Web
applications, there are some works such as [21] that have
developed tools that automatically insert the input validation
on the server side by eliminating malicious insertions
vulnerabilities. However, this approach has a disadvantage in
that it produces a great many false positives; that is, the
validator may fail by considering a message invalid when in
fact the message is valid.

Besides the works already listed there is another category
of work focused on developing firewalls, like Web Service
Firewall Nedgty [22], which deals with protection against
denial of service and stack overflow attacks. XML firewalls,
presented in [23], are concerned with validation of the
structure of XML content but not the content itself.
Reference [24] mentions protection against SQL injection
through an XML schema and a precompiled blacklist of SQL
commands, an approach which tends to produce many false
positives; however, details about the effectiveness of this
work with more extensive tests are not presented.

Among the related works it can be seen that there is a
lack of studies specifically addressing input validation for
Web services.

III. SECURITY ISSUES IN WEB SERVICES

Web services create new security risks for organizations
because old methods of protection such as firewalls and
antivirus applications are not able to protect them. Common
firewalls that act in the networking layer allow the normal
flow of HTTP (Hypertext Transfer Protocol) requests
without blocking these flows, because they are designed to
make use of HTTP using port 80.

In addition, the Web services functionality is exposed
through WSDL files since from the descriptions of the
methods and variables of the WSDL file, important
information can be obtained in order to accomplish an attack
known as WSDL scanning [1].

There are attacks which are directly related to data
manipulation: XSS and SQL injection. Reference [25]
classifies two types of XSS attacks: first order and second
order.

In a first-order XSS attack, the vulnerability results from
the application inserting part of the user input on the page
itself. The malicious user uses social engineering to convince
the victim to click on a URL that contains malicious
HTML/JavaScript code. The user's browser displays the
HTML page and runs the JavaScript that was part of a
malicious URL received, resulting in the theft of session
cookies or other sensitive data from the user. This type of
attack can hardly be done against Web services.

In the second-order XSS attacks, vulnerability results
from the storage of malicious entries by the user in the
application database, and then when the HTML page is
accessed, the code runs and is shown to the victims (for
example, on social network pages). Second-order attacks are
more difficult to avoid because the application needs to
validate or sanitize inputs, which may contain executable
script code. In the context of Web services, by presenting
unvalidated data directly to the user, Web services can be
attacked. For example, by making use of AJAX
(Asynchronous JavaScript and XML), data Web services
provided by third parties that may be contaminated can be
obtained. Using, for example, the command
document.write(xmlhttp.responseText), if the
answer to this AJAX call made to a Web service contains
HTML and JavaScript data, these data will be interpreted
and executed, posing a risk to the user.

Code injection attacks (SQL injection) work through
malicious inputs aimed at the execution of SQL commands
in the database [15], [25], [26].

In Web services that do not have proper exception
handling, the error message may contain valuable data for
the attacker to use. Thus, through trial and error, the attacker
can find which database technology is being used, tables that
can be explored, and all the necessary information to make

88Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

ERROR: The query was not accomplished.
Description: 1064 - You have an error in
your SQL syntax; check the manual that
corresponds to your MySQL server version
for the right syntax to use near '1=1'' at
line 1

Line 11: Incorrect syntax near '')) or
ItemId in (select ItemId from
dbo.GetItemParents('4''. Unclosed
quotation mark before the character
string ')))) > 0 '.

an attack. SQL injection attacks can increase the privileges,
and thus it is possible to run in administrator mode on the
compromised server. It is possible to test whether a Web
service is vulnerable by sending SOAP requests with
properly handled parameters. For example, by sending
“'"1=1 –” as a parameter for a particular service, it is
possible to obtain in return the outputs of Figs. 1 and 2.
These figures show two examples of responses of error
outputs from the database that were returned by the server.
These responses can be used to discover details of the
database and to send new requests to the database, allowing
more details to be acquired, and to carry out more complex
commands in the database, which can result in elevation of
privilege, injection of files, and theft or destruction of the
database.

Through the output response in Fig. 1 it is possible to
identify that it is a MySQL database and that SQL command
injection was performed, because of the type of error
returned. It can be concluded based on the output response in
Fig. 2 that the name of one of the columns of the database is
ItemId, because of the syntax of the SQL select
command, and it can be deduced that the database is
Microsoft SQL Server by observing the syntax of stored
procedure “dbo.”.

Figure 1. Example of output response 1.

Figure 2. Example of output response 2.

The Blind SQL injection attack is a type of SQL injection
in which the results are not displayed to the attacker. It is
very commonly used against Web services, because many
servers prevent the error messages generated by the service
from reaching the user. In Web services an HTTP 500 error
is usually returned when an attempt at blind SQL injection is
performed; however, there are techniques such as
measurement of response times of the server that can be used
to determine the parameters necessary to perform the attack
successfully.

Although it is difficult to obtain reliable information on
security incidents and data breaches as reported in the book
of Adam Shostack and Andrew Stewart [27], in

Databreaches table [28] it is possible to observe that the
major attacks in cases of data theft that occurred were related
with the injection of malicious data. In the table given in
[28], for example, when accessing the URL that exists on the
date of the incident of the entity Heartland Payment Systems,
in which 130 million data were lost, it is possible to read the
reason for the incident: SQL injection.

IV. WSIVM – WEB SERVICES INPUT VALIDATION

MODEL

In this section, we describe the WSIVM (Web Services
Input Validation Model) which is proposed to validate input
data to provide security for Web services. Initially the
operation of Web services is described without the use of the
model. After that the operation of Web services is explained
using the proposed model.

A. Operation of Web Services without WSIVM

In the traditional way, a customer finds the Web service
he or she needs through research into repositories of Web
services. The repositories store the references in the form of
Web services in UDDI (Universal Description, Discovery,
and Integration) format. UDDI is a standard protocol that
specifies a method of publishing and discovering directories
of services in a service-oriented architecture.

After the discovery the client sends a request to the Web
service. The Web service returns the response to the client
containing the result of his or her request.

In this traditional process, the client request is made
directly to the Web service, which processes the inputs and
returns the result. The standard used for this exchange of
messages is the XML-based SOAP format.

We assume that the Web service executes the user's entry
without any kind of validation and that the user input is part
of the SQL query described in (1).

SELECT name, age FROM clients WHERE name=input; (1)

If the user provides as input the name "Paul", which is a
valid entry for the name, the Web service returns as answer
the name and age of the customer "Paul". However, if the
user provides the following malicious input string: “Paul’
UNION SELECT name, password FROM

clients; -”, the SQL query would be represented in (2).

 SELECT name FROM clients WHERE name=‘Paul’
 UNION SELECT name, password FROM clients; -- (2)

As the Web service does not perform validation of input
represented in (2), it returns the secret value of "account
password" to the user that sent the malicious request to the
Web service. For the WSDL, the request is valid, because it
is a string as specified in the service description. However,
confidence in user input and lack of validation of this input
resulted in a vulnerability that provided sensitive data.

89Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

B. Operation of Web Services with WSIVM

The model WSIVM (Web Services Input Validation
Model) proposes to validate input data to provide security for
Web services.

The proposed model has several advantages compared
with the input validation normally done in an application,
since: (a) it prevents the waste of server processing with
invalid messages, (b) it reduces the possibility of denial of
service using content of messages, and (c) it is independent
of the technology used for the internal development of
services.

With WSIVM, the user makes the request in the usual
way, however, that request is validated by WSIVM (Fig. 3).

Figure 3. SOAP request with WSIVM.

If a malicious request is sent, as shown in the example
represented in the entry (2), instead of sending the password,
the WSIVM validation mechanism validates the request and
returns a generic error to the user. Thus the Web service does
not receive the malicious request (Fig. 4).

Figure 4. WSIVM blocks malicious request.

In more detail, what happens when a message arrives for
validation in WSIVM is that the entry submitted by the user
is validated through a module that was developed with the
XML specification that is on the server.

This avoids unnecessary consumption of server
resources, so, considering the example, the Web service does
not execute the SQL query if a malicious request is sent.

The interaction of the components of WSIVM is
represented in Fig. 5.

The WSIVMModule is a module responsible for calling
the other components.

The WSIVMValidator maps the SOAP message,
obtaining the fields of the body of the message, and sends it
to the WSIVMXMLLoader.

The WSIVMXMLLoader loads the elements and the rules
specified in the XML specification and checks the validity or
invalidity of the response with the WSIVMVerifier.

The WSIVMVerifier contains all the pre-defined rules for
validation of entries and is responsible for validating these
entries.

Figure 5. Operation of WSIVM [29].

V. DEVELOPMENT OF THE IMPLEMENTATION

The implementation of the model was developed using
the Apache Tomcat Web server and Apache Axis2
framework for SOAP messages [30] (Fig. 6). Apache Axis2
was chosen for the implementation of this work due to its
extensibility through modules and the ease of intercepting
SOAP messages through the modules.

Figure 6. WSIVM.

To implement the validation module for Apache Axis2
the Rampart module was used, which is the mode of
extension of Apache Axis2.

The phase of interception can be specified in the file
Module.xml. It was chosen to intercept the message in the
phase PreDispatch, which is the phase immediately
preceding the sending of the message and its processing by
the Web service.

The implementation operation is as follows: the
customer, which can be an application, a Web page, or any
mechanism capable of communicating with a Web service,
sends a message to the Web service. This message passes
through the Web server, that is, the Apache Tomcat. The
Web server sends this SOAP message to the Apache Axis.
The Apache Axis sends the message to be analyzed by
WSIVM. After the message is parsed, if it is held to be
invalid, an error message is sent to the customer by WSIVM.
If it is considered valid, it is usually transmitted for

90Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

<?xml version="1.0" encoding="UTF-8"?>

<valid_inputs_specification
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
WebServiceID=" UniversityManager "
xsi:noNamespaceSchemaLocation="valid_inputs_specification.xs
d">

<operation name="registerStudent ">

<input name="name" type="String" min="5" max="20"
accept="text" sanitize="true"/>

<input name="age" type="Integer" min="0" max="150"
accept="number" sanitize="true"/>

<input name="email" type="String" min="0" max="200"
accept="email" sanitize="true"/>

<input name="comment" type="String" min="0" max="200"
accept="text" sanitize="true"/>

<input name="site" type="String" min="0" max="300" accept="url"
sanitize="true"/>

<input name="data" type="String" min="0" max="200"
accept="regex" regexpattern= "(\\d{4})-(\\d{2})-(\\d{2})"
sanitize="true"/>

</operation>

<operation name="searchStudent ">

<input name="id" type="Integer" min="0" max="10000"
accept="number" sanitize="true"/>

</operation>
</valid_inputs_specification>

processing by the Web service, and the result is returned to
the client (Fig. 6).

The following is a detailed description of the WSIVM
model components: WSIVMXMLSchema,
WSIVMXMLSpecification, and WSIVM Rampart module.

WSIVMXMLSchema is the specification of the validation
schema of entries. It defines the format of the XML
specification and the valid attributes.

WSIVMXMLSpecification is the specification of
validation of entries. It specifies valid parameters according
to a set of predefined attributes and is used for validating
user input. Among the possible parameters are the entries:

• OperationName: the name of the operation or function
displayed in the Web service referred to in the
validation;

• SanitizeOperation: defines whether the parameters of
this operation or function can be reformulated if
necessary for the removal of characters that are not
accepted;

• ParamName: the name of the parameter or field
referred to in the validation;

• Allowed: an allowed field type, which is valid (text,
html, html+java-script, email, number, and all);

• Length: specifies the exact size of the field;

• Maxsize: specifies the maximum field size;

• Minsize: specifies the minimum field size;

• Nillable: determines whether or not it is possible that
the field is null (true or false);

• regEx: allows a regular expression to be specified for
validation.

The WSIVM Rampart module is the main component of

the mechanism implemented. It is a module for Apache Axis
2, which receives data from the client and validates these
data according to XML specification, calling Java classes to
perform validations. This module consists of a wsivm.mar
file that has the following compressed components:

• module.xml: contains a description of the module, the
class that will carry out the validation, and the phase in
which that validation will occur;

• MANIFEST.MF: a Java manifest file;

• Java classes related to input validation: WSIVMModule,
WSIVMValidator, SIVMXMLLoader, and
WSIVMVerifier.

VI. CASE STUDY

As a case study, a hypothetical system of registration of
students for a university named UniversityManager
was developed. The system comprises a client application
called ClientManager and a server (a Web service)
named UniversityManager (Fig. 7).

Figure 7. WSIVMXMLSpecification – UniversityManager [29].

For the development of the Web service, Java language
was used and performance tests were conducted using the
program soapUI [30]. For the development of the Web

service UniversityManager, a class with the operations
searchStudent and registerStudent and a class to
handle the operations of the database were created. This Web
service was developed without any input validation in the
operations of Java classes, purposely leaving the validation
to WSIVM.

 The searchStudent operation receives a registration
number (ID) that must be an integer that is greater than zero
and no more than 10000 and returns the student record
containing a String with his or her information. The
registerStudent operation receives the information
on the student, which must not contain HTML or Javascript
code, and registers it on the MySQL database. In the
database a student’s table is created with the following
fields: ID (auto-incrementing identifier), name, age, email,
comment, site, and birthday.

After creating the Web service and the database, a Java
class called managerTest was created to test them locally.

91Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-
envelope"
xmlns:univ="http://university.wsivm.example"
>
<soap:Header/><soap:Body>
 <univ:registerStudent>
 <univ:name>John</univ: name >
 <univ:age>12</univ: age >
 <univ:email>john@hsj.com</univ:email>
 <univ:comment>Passed</univ: comment >
<univ:site>http://www.gol.com</univ:site>
<univ:birthday>1980-09-12</univ: birthday >
</univ: registerStudent >
</soap:Body></soap:Envelope>

<service>
<parameter name="ServiceClass"
locked="false">example.wsivm.university.Manage
r</parameter>
<operation name="registerStudent">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessa
geReceiver"/>
</operation>
<operation name="searchStudent">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessa
geReceiver"/>
</operation>
<module ref="wsivm"/>
<parameter
name="validationXML">file:///C:/WSIVM/valid_in
puts_specification.xml</parameter>
</service>

To operate the WSIVM, WSIVMXMLSpecification –
UniversityManager was specified according to the standard
model WSIVMXMLSchema and describes the parameters
for validation of entries.

This way, the Services.xml file required for Apache
Axis 2 was created (Fig. 8).

Figure 8. Services.xml – UniversityManager.

A package named Gerenciador.aar, containing the
class Manager, MySQL, the MANIFEST.MF descriptor, and
the services.xml file in the META-INF folder, was created.

In this experiment, two tests were performed: one using
the WSIVM input validation model and the other without
using it. The following scenario was configured to perform
the tests: 150 users are started gradually with a user booting
every 2 seconds. The test runs for 300 seconds (5 minutes).
The database is clean in order to analyze the number of
operations for registration of students that are carried out
successfully.

Figure 9. Example of SOAP message sent by soapUI.

SoapUI offers a friendly interface for testing. The tests
are performed by making direct calls to the Web service. The
SOAP message is sent as shown in the example in Fig. 9.

Fig. 10 shows the graph of results of response times of
the tests with and without input validation. The X-axis shows
the elapsed time of the test and the Y-axis shows the value of
the response time in milliseconds.

Figure 10. Response times with and without the use of WSIVM.

Fig. 11 shows the graph of the results of throughput tests
with and without the WSIVM input validation. The X-axis
shows the elapsed time of the test and the Y-axis shows the
number of bytes per second (B/s).

Figure 11. Throughput with and without the WSIVM validation.

It can be observed that the rate of transfer of bytes per
second (B/s) or throughput falls considerably with the use of
WSIVM.

In Table 1, the calculations that appear in the “Total” row
in each of the columns were carried out as follows: the entry
in the "Without WSIVM" column is subtracted from that in
the "With WSIVM" column and this value is divided by the
value of the column " Without WSIVM".

92Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

TABLE I. CONSOLIDATED RESULTS FOR THE CASE STUDY [29].

Comparison
Min.
Time

Max.
Time

Average
Time

 Transferred
Bytes

Bytes per
second

(throughput)

Insertions in the
Database

Without WSIVM 35 ms 27848 ms 2494,85 ms 1974195 B 6506 B/s 10078

With WSIVM 64 ms 13346 ms 4541,24 ms 1236330 B 4012 B/s 5134

Total 83% -52% 82% -37% -38% -49%

The test results show that when WSIVM is used, a
significant increase (82%) in the average response times can
be observed, the total throughput decreases by 38%, and the
number of students registered in the database decreases by
49% from 10,078 to 5134.

The time spent in the processing of XML messages had
an impact on the performance of transactions, which are
validated one by one and compared with the rules specified
for valid entries. The interpretation of the messages is a
costly task in terms of processing and memory
requirements, so the validation is done before the
processing by the Web service and the return of the response.

There was also a decrease in the total number of bytes
transferred because messages took longer to process and
therefore a smaller number of messages were processed and
the number of responses was lower.

In this case, due to the time required for validation of
each message, the application was able to process fewer
messages in the same period of time, resulting in fewer
insertions of students in the database.

A decrease in performance was expected due to the time
required to go through the validation of XML trees in order
to validate fields, which is often costly in terms of
processing. However, preventing the insertion of invalid data
by validating fields can compensate for the loss of
performance. This performance loss can be addressed in
future work: tests using other mechanisms for interpreting
XML files may be carried out as well as tests of the use of a
Web service that requires more processing, demonstrating
the gain with less waste due to processing of invalid
messages. Even so, the protection of services obtained
through the use of the model is an advantage that should be
considered.

In the tests that were performed no improper entry has
been processed since the environment was properly
configured to filter invalid entries.

VII. CONCLUSION AND FUTURE WORK

Because unevaluated data entry is the biggest challenge
for any application development team in the Web
environment and is the source of security problems in many
applications [11] [15], a reusable and independent
mechanism for data entry validation such as the WSIMV
proposed in this paper is an important contribution to the
security of Web services.

The WSIVM focuses on validation of data entry,
allowing only valid entries to be accepted, since it is based
on the white list approach, in which only predefined values
are accepted and others are considered invalid.

 This model is particularly interesting for the case of Web
services that require processing of large amounts of data
entries, because by ensuring that only valid entries are
accepted it avoids the waste of processing by the application.

Carrying out input validation using the presented model
is a solution for legacy applications that were not designed
with validation of input data, since carrying out validation
at entry points to the Web service decreases the need for a
greater number of changes in the existing application,
reducing development costs.

Moreover, according to Tsipenyuk et al. [31], the white
list approach is more reliable than the blacklist. In the
blacklist approach all values are considered valid unless
explicitly specified. This approach has some problems; for
example, if the validation of a field that does not contain
HTML code is desired and a blacklist is created based on the
current version of HTML, in the case of new versions, this
list may no longer be considered valid.

The white list approach used in WSIVM results in a
reduction in false positives and is a more reliable means of
validating data entries. In contrast, the work reported in [21]
has the disadvantage of obtaining large false positives; that
is, the validator may fail by considering a message invalid
when in fact the message is valid.

The number of false positives and true positives or false
negatives will depend on the WSIVM XML Specification
defined. More restrict regular expression specifications could
have a negative impact on false positive numbers. The
framework provides the specification to be customized
according to the Web Service requirements and needs.

This study found a solution for the prevention of data
injection attacks in Web services, providing a reusable
protection mechanism which prevents the processing of
malicious calls and is able to provide validation of input data
regardless of the implementation of the Web service that
uses this solution.

In the case study, it was observed that improved security
had a negative impact on the performance of the developed
Web service, which is quite common in security research.
However, the validation of inputs reduces the possibility of

93Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

inserting invalid data and thus prevents attacks that would
stop the correct execution of the Web service, offsetting the
decrease in performance.

Using SQLmap, SQLninja or Acunetix or majority of
available dynamic black-box security tools to test was not
considered because most of these tools do not support web
services testing.

Tests would be limited to the kind of web service or to
the specification, the contribution of the framework with its
inherited flexibility is supposed to be more valuable than
tests on specific situations, however as the model advances
new tests and comparisons will be proposed.

Our previous work published in Brinhosa et al. [29] is a
reduced version of these research results. Here, in this paper,
we presented in a detailed way: security issues in web
services, the WSIVM model as well as the case study
development and results obtained with tests.

There are different aspects that can be addressed in future
work: (a) optimization of the implementation to improve the
performance of the proposed model; (b) development of a
semi-automatic generator of security specifications from
WSDL; (c) verification of SOAP messages and paths in
XPath format; (d) use of artificial intelligence or an anomaly
detection system; and (e) making a feedback loop filter
validation of invalid entries.

REFERENCES

[1] A. Belapurkar, A. Chakrabarti, H. Ponnapalli, N. Varadarajan, S.

Padmanabhuni, and S. Sundarrajan, Distributed Systems Security
Issues, Processes and Solutions. Hoboken, NJ: John Wiley and Sons,
2009.

[2] M. Q. Saleem, J. Jaafar, and M. F. Hassan, “Model driven security
frameworks for addressing security problems of service oriented
architecture,” in Proc. 2010 Int. Symp. Information Technology
(ITSim), June 15–17, vol. 3, pp. 1341–1346.

[3] N. A. Nordbotten, “XML and Web services security standards,”
Communications Surveys & Tutorials, IEEE, vol. 11, no. 3, pp. 4–21,
2009.

[4] CEP. (2011). CEPWebService. Available: http://www.i-
stream.com.br/webservices/cep.asmx. [retrieved: November, 2012]

[5] SIORG. (2009, Oct.). “Sistema de informações organizacionais do
governo federal – SIORG – descrição do Web service SIORG versão
2.0”. Available:
http://catalogo.governoeletronico.gov.br/arquivos/Documentos/SIOR
G-DocumentacaoWebServicev.2-091006.pdf. [retrieved: November,
2012]

[6] J. Feiman, “Security in the SOA world: methodologies and practices,”
Enterprise Integration Summit, Sao Paulo, Brazil, Apr. 13–14, 2010.
Available:
http://www.gartner.com.br/tecnologias_empresariais/pdfs/brl37l_a4.p
df. [retrieved: November, 2012]

[7] J. Viega and J. Epstein, “Why applying standards to Web services is
not enough,” IEEE Security & Privacy, New York, NY, vol. 4, no. 4,
pp. 25–31, 2006.

[8] M. Jensen, N. Gruschka, and R. Herkenhöner, “A survey of attacks
on Web services,” Computer Science – Research and Development,
vol. 24, no. 4, pp. 185–197, 2009.

[9] S. Lakshminarayanan, “Interoperable security standards for Web
services,” IT Professional, vol. 12, no. 5, pp. 42–47, Sept./Oct. 2010.

[10] SANS. (2011). The Top Cyber Security Risks. Available:
http://www.sans.org/top-cyber-security-risks/. [retrieved: November,
2012]

[11] OWASP. (2011). “OWASP code review guide. Codereview-Input
validation.” Available: http://www.owasp.org/index.php/Codereview-
Input_Validation. [retrieved: November, 2012]

[12] E. Bertino, L. Martino, F. Paci, and A. Squicciarini, Security for Web
Services and Service-Oriented Architectures. New York: Springer-
Verlag, 2009.

[13] T. Scholte, D. Balzarotti, and E. Kirda, “Quo vadis? A study of the
evolution of input validation vulnerabilities in Web applications,” in
Proc. Int. Conference on Financial Cryptography and Data Security
'11, St. Lucia, 2011.

[14] CENZIC. (2009). Web Application Security Trends Report.
Available:
http://www.cenzic.com/downloads/Cenzic_AppSecTrends_Q1-Q2-
2009.pdf. [retrieved: November, 2012]

[15] OWASP. (2010). “OWASP top 10 Web application security risks”.
Available:
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Proje
ct. [retrieved: November, 2012]

[16] Microsoft. (2012). “Microsoft Anti-Cross Site Scripting Library
V4.2” Available: http://www.microsoft.com/en-
us/download/details.aspx?id=28589. [retrieved: November, 2012]

[17] SSA (Sosnoski Software Associates Ltd). (2007). WS-Security
Wrapper. Available: http://wsswrapper.sourceforge.net/. [retrieved:
November, 2012]

[18] R. Wu and M. Hisada, “SOA Web Security and Applications”,
Technology, vol. 9, no. 2, p. 163-177, 2010.

[19] N. Sidharth and J. Liu, “A framework for enhancing Web services
security,” in Proc. 31st Ann. Int. Computer Software and Applications
Conf., 2007, COMPSAC 2007, Jul. 24–27, vol. 1, pp. 23–30.

[20] L. Sun and Y. Li, “XML and Web services security,” in Proc. 12th
Int. Conf. Computer Supported Cooperative Work in Design, CSCWD
2008, April 16–18, pp. 765–770.

[21] J. Lin and J. Chen, “An automated mechanism for secure input
handling,” Journal of Computers, vol. 4, no. 9, pp. 837–844, 2009.

[22] R. Bebawy, H. Sabry, S. El-Kassas, Y. Hanna, and Y. Youssef,
“Nedgty: Web services firewall,” in Proc. IEEE Int. Conf. Web
Services – ICWS, Orlando, pp. 597–601, 2005.

[23] A. Blyth, “An architecture for an XML enabled firewall,”
International Journal of Network Security, vol. 8, no. 1, pp. 31–36,
2009, ISSN 1816–3548.

[24] Y. Loh, W. Yau, C. Wong, and W. Ho, “Design and implementation
of an XML firewall,” in Proc. 2006 Int. Conf. Computational
Intelligence and Security, Nov. 3–6, vol. 2, pp. 1147–1150.

[25] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic
creation of SQL injection and cross-site scripting attacks,” in Proc.
31st Int. Conf. Software Engineering (ICSE '09), IEEE Computer
Society, Washington, DC, USA, pp. 199–209.

[26] J. Clarke, SQL Injection Attacks and Defense. Syngress Media Inc.,
2009.

[27] A. Shostack and A. Stewart, The New School of Information Security,
Boston: Addison-Wesley, 2008.

[28] Databreaches. (2009). “Top 10 worst data losses or breaches,
updated.” Available: http://www.databreaches.net/?p=7691.
[retrieved: November, 2012]

[29] R. B. Brinhosa, C. M. Westphall, and C. B. Westphall, “Proposal and
Development of the Web Services Input Validation Model, “ in Proc.
IEEE Network Operations and Management Symposium (NOMS
2012), Maui, Hi, USA, pp. 643-646.

[30] Apache. (2012). “Welcome to Apache Axis2/Java,” Available:
http://axis.apache.org/axis2/java/core/. [retrieved: November, 2012]

[31] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven pernicious
kingdoms: a taxonomy of software security errors,” Security &
Privacy, IEEE, vol. 3, no. 6, pp. 81–84, 2005.

94Copyright (c) IARIA, 2013. ISBN: 978-1-61208-245-5

ICN 2013 : The Twelfth International Conference on Networks

