
Role Inference + Anomaly Detection =
Situational Awareness in BACnet Networks

Davide Fauri1, Michail Kapsalakis2, Daniel Ricardo dos Santos2, Elisa
Costante2, Jerry den Hartog1, and Sandro Etalle1

1 Technical University of Eindhoven, 5600MB Eindhoven, NL,
{d.fauri, j.d.hartog, s.etalle}@tue.nl

2 Forescout OT Center of Excellence, John F. Kennedylaan 2, 5612AB Eindhoven, NL
{michail.kapsalakis, daniel.dos.santos, elisa.costante}@forescout.com

Abstract. In smart buildings, cyber-physical components (e.g., con-
trollers, sensors, and actuators) communicate with each other using
network protocols such as BACnet. Many of these devices are now con-
nected to the Internet, enabling attackers to exploit vulnerabilities on
protocols and devices to attack buildings. Situational awareness and
intrusion detection are thus critical to provide operators with a clear
and dynamic picture of their network, and to allow them to react to
threats and attacks. Due to Smart Buildings being relatively dynamic
and heterogeneous environments, situational awareness further needs to
rapidly adapt to the appearance of new devices, and to provide enough
context and information to understand a device’s behavior. In this paper,
we propose a novel approach to situational awareness that leverages a com-
bination of learning and knowledge of possible role devices. Specifically,
we introduce a role-based situational awareness and intrusion detection
system to monitor BACnet building automation networks. The system
discovers devices, classifies them according to functional roles and detects
deviations from the assigned roles. To validate our approach, we use a sim-
ulated dataset generated from a BACnet testbed, as well as a real-world
dataset coming from the building network of a Dutch university.

1 Introduction

Building Automation Systems (BAS) are control systems that manage core
physical components of building facilities such as elevators, access control, and
video surveillance [12, 6]. Besides residential and commercial buildings, BAS also
control critical facilities such as hospitals, airports, and data centers. Within
a BAS, devices communicate with each other using network protocols such as
BACnet, KNX, and Zigbee. In this paper, we focus on BACnet [1], which is one
of the most widely used protocols for BAS.

BACnet specifies optional security features for data confidentiality and in-
tegrity. Nevertheless, most smart buildings exchange data without authentication
and devices are programmed to process every message received, opening them to
exploitation by internal and external attackers [19]. These attacks can lead to

economic loss or even harm building occupants [10, 13]. Addressing the security
of smart building networks is thus fundamental, but few solutions have been
proposed in the literature (see, e.g., [7, 8, 11, 14, 16, 22]).

Security solutions are needed that make it easier to understand the heterogene-
ity of devices in a BAS [12]. Moreover, we note that buildings are live, dynamical
systems: over time, their networks are expanded and modified with new devices.
We therefore also need a solution that can easily adapt to changes in the system.
Two complementary non-intrusive security techniques are: situational awareness,
which helps in the identification and mitigation of security risks via detailed
descriptions in a network map; and intrusion detection, which finds anomalous
communication that may indicate the presence of attacks. However, to the best
of our knowledge, there is currently no solution that provides situational aware-
ness by automatically and continuously identifying, characterizing, and grouping
BACnet devices in a monitored network. As for intrusion detection, current
specification-based approaches depend on vendor-provided documentation [4, 7],
which is problematic when the documents are not available or not easily parsable.
Conversely, learning-based approaches [11, 14, 16] usually adopt black-box tech-
niques, which provide little semantic information to help understand the cause
of an anomaly and fix it [15]; moreover, such systems typically are limited in
their adaptability, requiring to run a new learning phase whenever the network
is modified (e.g., new devices appear on the network).

To overcome the gaps above, we propose a role-based situational awareness
and adaptable intrusion detection system to monitor BACnet networks. A role
represents the functional behavior assumed by a device in a network. For instance,
workstations perform management functions; field devices and controllers perform
automation functions; and routers perform network functions. Roles help improve
situational awareness and intrusion detection in two fundamental ways:

1. they improve understandability of alerts and the network map: the role
provides valuable context information, e.g. while a workstation sending out
many requests may still be performing a legitimately function, this is unlikely
when done by a controller. This knowledge improves the actionability of
the alert; it becomes easier to select an appropriate response. By grouping
together devices with similar function and properties it enriches the network
map, improving awareness.

2. they improve adaptability : e.g. when a new device appears on the network, it
is possible to apply rules and models based on the device’s role. (Determining
a device’s role can be done much more quickly than the learning of a full
intrusion detection model.)

Although some characteristics of a device (e.g., protocol and vendor) can be
known by just parsing the observed network traffic, learning the role of a device
is not trivial for three reasons. First, a role is not directly defined by the location
of the device in the network nor by its capabilities as documented by the vendor
(its so-called BACnet profile [1]), since smart devices can perform multiple roles
and devices with different roles can be placed on the same network [12]. Second,
devices can behave differently than documented [7]: a device can be over-specified

(when it is used for a role ‘below’ its documented capabilities) or under-specified
(when it performs more functions than expected for its profile). Third, a BAS can
change due to the addition of new subsystems or the integration in a larger system
spanning multiple buildings. In such cases, the same roles may be performed by
devices with different vendors, different capabilities or a different naming scheme.
Thus, a device’s role should be inferred from monitoring the device’s behavior.

The main contributions of our approach are: (i) role extraction: the iden-
tification, classification, and grouping of devices in a network with specific
behavioral roles inferred from fields extracted from BACnet network messages,
using heuristics based on the protocol specification and on similarity classification;
(ii) role-based network intrusion detection to raise alerts when a device behaves
in disagreement with its assigned role; and the creation of (iii) a network map
with device roles as well as device description (e.g., vendor, model, and firmware
version)and device connections, which can be used for security assessments and
to provide context for security alerts.

Through the contribution above our approach offers adaptability; network
topology and device classifications (roles) are dynamically learned from network
traffic, without depending on vendor-specific descriptions of each device, ensuring
the dynamic map stays up-to-date with the adapting system. It also offers
understandability: the intrusion detection model provides semantically rich alerts
that are more easily interpreted by network operators, especially aided by the
context provided by the dynamic network map.

The rest of this paper is organized as follows. Section 2 describes the details of
BACnet used throughout the paper and discusses related work; Section 3 details
our approach to situational awareness and intrusion detection; Section 4 shows
our experimental setup and evaluation, using a real dataset coming from the
network of a Dutch university, as well as a simulated dataset generated from a
real testbed; and Section 5 concludes the paper.

2 Background

Network levels. A BAS is usually divided in three functional levels [12]. The field
level contains sensors and actuators that interact with the physical world; the
automation level implements the control logic to execute appropriate actions; and
the management level is used by operators to monitor, configure and control the
whole system. Devices in these levels communicate via network packets to inform
their states and send commands to each other. Sensors send their readings to
controllers, which in turn decide what actions to take and communicate their
decisions to actuators. Recently, devices in the field and management levels
became capable of performing tasks pertaining to the automation level. Thus,
modern BAS network architectures may sometimes be simplified to two levels:
multiple, local control networks interconnected by a common backbone network.

Protocol layers. BACnet [1] can be used on both control and backbone networks
because its architecture is based on four layers. The Application and Network
layers always have the same structure and are transparent to the underlying

network infrastructure. The choice of Data Link and Physical layers, instead,
defines one of several BACnet variants. BACnet/IP, the protocol variant that
uses UDP/IP in the Data Link Layer, is commonly used for the backbone
communication between workstations and controllers, while BACnet MS/TP,
another variant, is commonly used on control networks to connect to field devices.

In BACnet/IP, each node in the local network has a unique BACnet MAC
address consisting of four bytes of IP address and two bytes of UDP port. The
BACnet Virtual Link Layer (BVLL) is used for Data Link and provides the
interface between the underlying capabilities of the communication infrastructure
and the BACnet Network Layer. The Network Layer is used to unicast or
broadcast messages on remote networks. These messages can be used for routing
and network discovery, or to convey Application Protocol Data Units (APDU)
between devices. The Application Layer is used to exchange data between BACnet
devices using APDUs, which contain the actual application data, such as the
present value of a thermostat. Application Layer messages have different PDU
types: Confirmed-Requests are generated by requesting client devices, while
ACKs or Errors are generated by responding server devices.

Network topology. A single BACnet network is a connection of devices with the
same Physical and Data Link layers that can directly exchange unicast, multicast
or broadcast messages. An interconnection of two or more BACnet networks
using different Physical and Data Link layers (for example, the backbone and
control networks) constitutes a BACnet internetwork. The devices responsible
for transferring messages between different types of network are called BACnet
Routers. Each network is assigned a unique BACnet network number and Routers
advertise the numbers of networks that they route. Additionally, BACnet Broad-
cast Management Devices (BBMD) are used to propagate broadcast messages
from one network to another. Devices that speak BACnet but are not exclusive
members of a BACnet network (e.g., workstations) have to register to a BBMD
as Foreign Devices. Finally, BACnet Gateways are used to route and translate
messages towards networks with other communication protocols (e.g. KNX).

Objects, properties, and services. BACnet defines a standard set of objects, each
with a standard set of properties that describe an object and its current status
to other devices in the BACnet internetwork. Services are used by one BACnet
device to obtain information from another device or command another device
to perform an action. Each time a service is initiated by a client (or executed
by a server), a request (or acknowledgement) message is sent over the network,
transmitting properties of objects.

Every BACnet device must implement a Device object, whose properties
describe the device to the network. The choice of which other objects, properties,
and services are present in a device is determined by its function and capabilities
(e.g., an analog sensor would possess an AnalogInput object). Some properties,
such as Description and DeviceType are configured during installation; others,
such as PresentValue provide status information (e.g., the sensor input repre-
sented by the AnalogInput object). The ReadProperty service is implemented
by every device to inform its properties to another device.

Related work. Three other applications discover and classify devices in BACnet
Networks. Redpoint3 includes an Nmap plugin that, contrary to our passive
approach, sends BACnet commands to discover a network topology and enumerate
all its BACnet devices. GRASSMARLIN4 only classifies BACnet devices as client
or server, as opposed to our role assignment. Finally, Caselli et al. [4] classify
BACnet devices using device-specific Protocol Implementation Conformance
Statements (PICSs). This allows for a better classification when vendors have
extended the set of services that a device can initiate or execute.

Caselli et al. [4] also presented a specification-based BACnet IDS. Their
system discovers model names and vendor IDs from the network traffic, and
then searches the Internet for documentation related to each device. From these
documents (e.g. PICS) and system configuration files, the IDS automatically
generates a detection model about which services and properties are allowed
for each device. Their approach suffers the disadvantage of depending on the
availability of specification documents, and on them being machine-readable in
the first place. More specifically, it requires documents to have a specific format
and unambiguous notation. To overcome the latter limitations, the approach
of [7] generalizes the interpretation of different PICS formats using network traffic.
Our approach, on the other hand, does not need any external document.

Among anomaly-based BACnet IDS, different techniques were proposed. Pan
et al. [14] used a rule learner to classify abnormal BACnet traffic according to
attack types; the authors also proposed an action handler to discard malicious
packets. Johnstone et al. [11] used an Artificial Neural Network to detect timing
attacks in BACnet, e.g., values that are changed in quick succession. Tonejc
et al. [16] introduced a framework that allows the characterization of BACnet
network traffic using unsupervised machine learning algorithms, such as cluster-
ing, random forests, one-class Support Vector Machines, after a dimensionality
reduction pre-processing step . The authors focus on the headers of packets,
which reflect the structure of the network, but neglect the actual application
data.

A major disadvantage of the machine learning methods above is that they are
“black-box” models, in the sense that they are hard to understand and modify and
their alerts have a wide semantic gap, i.e. they do not provide enough semantic
information to help understand the cause of an anomaly and to fix it [15]. To
address this issue, a different type of “white-box” IDS has been proposed in [5] for
monitoring database transactions, and has been successfully applied to different
scenarios [9, 20, 21]. In particular, both us [8] and Zheng and Reddy [22] used a
white-box model as part of an IDS for BACnet networks, monitoring variable
values and number of messages. Both the approaches are limited, though, in that
they only monitor the network communication and don’t provide context about
the devices that are communicating.

3 https://github.com/digitalbond/Redpoint
4 https://github.com/iadgov/GRASSMARLIN

Network
Traffic BACnet Parser

Inventory
Builder

Message
Fields

Role-based
intrusion
detection

Dynamic
Network

Map

Alert

Role
Classifier

Situational
Awareness

Adaptable
Intrusion
Detection

Device
Role

Device
Description

Fig. 1. Overview of our approach

3 Approach

Figure 1 shows an overview of our system, which has two main components: a
Situational Awareness module that identifies and classifies devices in the network
and an Intrusion Detection module that raises semantic Alerts when possible
intrusions are detected (the semantics is provided by the information gathered
and inferred about the devices involved in an alert).

All the information (e.g., attributes and roles of a device, raised alerts)
is displayed on a Dynamic Network Map, i.e. a continuously updated graph
that represents network devices and observed communications between them.
The network map helps operators understand the network when identifying
potential threats in advance (e.g., vulnerabilities that devices are exposed to or
communication that should not exist between devices of certain roles or functional
levels) and when taking corrective actions (e.g., updating vulnerable devices or
isolating the network).

To build such a map, the system first analyzes captured Network Traffic,
which is processed by a BACnet Parser to extract the relevant Message Fields
from each message. The extracted fields are then sent to the two main modules.

The Situational Awareness module consists of an Inventory Builder that
compiles information from the Message Fields into a list of devices with associated
Device Descriptions ; and a Role Classifier that assigns a role to discovered devices.
Device Descriptions and Device Roles are used to enrich the network map. Every
node in the map that corresponds to a BACnet device is labeled with its role
and enriched with: (i) the services and objects that it supports (and that were
seen in the network traffic); and (ii) information extracted from properties of
its objects, such as device ID, device model, vendor ID, vendor name, firmware
version, and location.

The Role-based Intrusion Detection module reads Message Fields and can
raise alerts for malicious behavior detected when a device acts in disagreement
with its assigned role. This anomalous behavior is detected when a device, e.g.,
uses services that are not allowed for its role or sends an unusual number of
messages for its role.

In the remainder of this Section, we detail the three components introduced
above: Inventory Builder (Section 3.1), Role Classifier (Section 3.2), and Role-
based intrusion detection (Section 3.3).

3.1 Inventory builder

Automatic inventory building can be active, sending network messages to discover
devices and their properties, or passive, analyzing the network traffic generated
by the devices. The active method forces all network hosts to communicate their
information, but it is invasive and may disrupt the normal process of a building
or be blocked by a firewall. The passive method is noninvasive, but it is not
able to detect devices and services that have no network activity [18]. We take a
passive approach and analyze BACnet messages sent by the devices to extract
services, objects, properties, and values that help us map the network.

Learning network connections between devices from captured traffic and
representing these connections via a network map is a relatively straightforward
process that has already been described in the literature [2]. Thus, we will focus
on gaining information about the devices and their roles, since this is critical to
enrich the network map and ultimately raise semantic alerts.

We extract the following features of BACnet devices: (i) Instance Number
(a unique identifier for every BACnet device in the network); (ii) Object Name
(a unique name for every BACnet device in the network); (iii) Vendor Name /
ID (an integer uniquely identifying a vendor, which is assigned by the BACnet
community); (iv) Model Name (assigned by the vendor); (v) Firmware version;
(vi) Location (if it has been assigned by the operators); and (vii) the Data
Link layer in use (which determines whether the device is nested or not). The
identification label for a device is obtained from a combination of features (i)
and (ii), while features (iii) through (vii) are descriptive information.

Features (i) to (vi) are obtained from the services sent by the devices
in the BACnet Application Layer. The device instance number can be ex-
tracted from several services, such as I-Am, I-Have, ConfirmedCOVNotification,
and ConfirmedEventNotification. The Vendor ID is acquired from I-Am and
ReadProperty acknowledgments. The other features are obtained from replies to
ReadProperty requests.

Feature (vii) is inferred from the BACnet Network Layer. At this layer, the
source and destination bits specify the presence of a source or destination address.
If those bits exist, then the BACnet/IP device sending or receiving the message is
a BACnet Router, while the actual initiator or receiver is the device mentioned in
the details of the BACnet Network Layer. The length of the source and destination
addresses provide us with additional information about the network behind the
BACnet Router. Table 1 shows the address length that devices should have
according to the Data Link layer protocol they use. The Table shows two lengths
shared by different protocols. The first is between BACnet/IP and Ethernet
devices. This can be disambiguated since BACnet/IP addresses are identified
when we parse the UDP/IP traffic. The second overlap is between MS/TP and
ARCNET, which we cannot distinguish.

We also define two additional device features that have useful security im-
plications: whether the device is a BBMD and whether it is a Foreign Device.
These features are important because they indicate the possibility for a foreign
BACnet device from an external network to register itself to a BBMD and be
considered part of the internal BACnet network. For BBMD devices reachable
from the public internet, this means that an attacker could access internal BAC-
net/IP devices even if they are not directly reachable via IP network, thereby
circumventing network access control [3].

These two features are inferred from the BVLL layer of BACnet/IP, which
includes a function code that determines the purpose of a message. When a device
initiates a BACnet message with function code BVLC-Result, Forwarded-NPDU,
or Read-Foreign-Device-Table-Ack, then that device is a BBMD. When a
BACnet message is sent with the function code Register-Foreign-Device,
or Distribute-Broadcast-To-Network, then the initiator is a Foreign Device,
while the receiver is a BBMD.

3.2 Role classifier

BACnet devices belong to one or more standardized Device Profiles, according
to the capabilities and services that they implement. If a device claims to
belong to a certain profile, it must implement the minimal set of services that
characterizes that profile. For example, all BACnet Smart Actuators need to
provide the WriteProperty and ReadProperty services. Profiles are grouped
into more general Profile Families [23]. An exhaustive list of standard profiles
and profile families is shown in the first two columns of Table 2. The list of
services implemented by each profile is available in [1].

BACnet has no property named, e.g., DeviceProfile or ProfileFamily.
Therefore, it is not possible to directly request this information over the net-
work. Instead, profiles are mentioned in the documentation of each device. It is
common for device vendors to implement additional functionalities, sometimes
pertaining to other profiles, which may or may not be included in the device’s
documentation [7]. Additionally, a device may provide functionalities that are not
needed by the BAS. This may result in a discrepancy between documentation
and operation where the observed behavior of a device is different from what is
suggested by its documentation.

BACnet device profiles are too granular and redundant for situational aware-
ness and intrusion detection (e.g., we do not usually need to distinguish between

Table 1. Address length (in bytes) for BACnet variants

Data Link layer Destination length Source length

BACnet/IP or Ethernet 6 6
MS/TP or ARCNET 1 1

LonTalk 2 2
LonTalk unique Neuron ID 7 2

ZigBee 3 3

a controller and a lighting controller), while profile families are built around
the target application domain. Therefore, we classify devices using neither the
standard profiles nor the profile families, but their functional roles. These roles
are defined in a building automation context; in other operational settings (e.g.
Industrial Control Systems, smart grids), the number and type of these roles
might vary. We follow the BAS functional levels mentioned in Section 2 (namely,
field, automation, and management), to which we add a fourth routing level,
which contains devices that maintain the network infrastructure (e.g., routers and
gateways). To stress the fact that this division is based on the actual behavior,
instead of a device belonging to a level we say that it belongs to (assumes) a role.
As these roles fundamentally differ in function, they also differ in the network
behavior that we can observe. This leads to the following list of device roles (also
shown in the third column of Table 2):

Table 2. Device Profiles, Profile Families, and Roles usually associated with them.

BACnet Device Profile
BACnet

Profile Family
Behavioral

Role

Adv. Operator Workstation
Operator
Interfaces

WorkstationOperator Workstation
Operator Display

Building Controller

Controller
ControllerAdv. Application Controller

Application Specific Controller
Smart Actuator

Field Device
Smart Sensor

Adv. Lighting Workstation Lighting
Operator Interfaces

Workstation
Lighting Operator Display

Adv. Lighting Control Station Lighting
Control Stations ControllerLighting Control Station

Lighting Supervisor Lighting
ControllersLighting Device Field Device

Adv. Life-Safety Workstation
Life-Safety

Operator Interfaces
Workstation

Life-Safety Workstation
Life-Safety Annunciator Panel Field Device

Adv. Life-Safety Controller Life-Safety
Controllers

Controller
Life-Safety Controller

Adv. Access Control Workstation
Access Control

Operator Interfaces
WorkstationAccess Control Workstation

Access Control Security Display

Adv. Access Control Controller Access Control
Controllers

Controller
Access Control Controller

Router

Miscellaneous
RouterGateway

Broadcast Management Device
Access Control Door Controller

Field Device
Access Control Credential Reader

Routers are used to interconnect building automation devices from two or more
networks, which may differ in the Data Link layer or Application layer.

Workstations are used at the management level to store historical data of
building processes, to inform operators about the states of building components,
and to adjust setpoints in Controllers.

Controllers are used for automation level tasks; they contain and execute the
main logic processes that govern the BAS. They mainly interact with other roles
by reading/writing property values.

Field Devices interact with the physical environment at the field level. They
are connected to Controllers in two possible ways: either as simple inputs and
outputs, in which case they might not be visible on BACnet networks, or as
smart devices that implement BACnet and can communicate with other devices
by using BACnet services.

The topology of the BAS internetwork (see Section 2) influences the behavior
that we can observe. When monitoring only one network (e.g., the backbone
IP network), it’s not possible to observe the messages exchanged locally within
another network (e.g. between Controllers and Field Devices on a control network).
Since cost and performance constraints can sometimes prevent the monitoring of
control networks, Field Devices are typically harder to discover and classify.

We propose a two-step approach to classify devices. First, we apply heuristics
to identify roles based on the services observed over the network. Second, since
heuristics might never be matched if a device does not send or receive the right
services, we apply a similarity-based classification comparing known and unknown
devices.

Heuristics-based classification (HBC). The HBC assigns a role to network devices
by applying heuristics, derived from the BACnet specification, to features of the
network layers of a BACnet message. We assume that devices do not actively
spoof their behavior as that of another role, but note that the use of consistency
rules constraining the values of observed properties (such as what is described in
Section 3.3) could mitigate this issue.

The BACnet Network Layer contains information for the classification of
BACnet Routers. A device can be classified as a Router in two ways: i) when it
sends a BACnet I-Am-Router-To-Network message; and ii) from the messages
exchanged between BACnet/IP and non-BACnet/IP devices. In these messages,
a destination or source specifier determines the network number to which the
device belongs. As a result, we know that the IP initiator or receiver of the
message is a BACnet Router that serves the network of the nested device.

The services in the messages of the Application Layer allow us to clas-
sify Controllers and Workstations. We look for services and behaviors exclu-
sive to a certain BACnet profile, and then label the devices performing those
services with the associated role. As an example, when a device initiates a
WritePropertyMultiple service, it is classified as a Workstation, because only
Workstations should initiate that service. By the same principle, the device that
executes a WritePropertyMultiple request and responds with a Simple-ACK

is classified as a Controller. When observing some services like in the example

above, it is possible to classify both the source and destination devices; in other
cases this is not possible, and only one device is classified. For example, the
ReadPropertyMultiple service is always executed by Controllers but may have
different clients.

The services that are always initiated by Workstations and exe-
cuted by Controllers are: WritePropertyMultiple, AcknowledgeAlarm,
GetEventInformation, ReadRange, GetEnrollmentSummary,
DeviceCommunicationControl, TimeSynchronization, ReinitializeDevice,
AtomicReadFile, and AtomicWriteFile. The services that are always initiated
by Controllers and executed by Workstations are: ConfirmedEventNotification
and UnconfirmedEventNotification. The services that are always initiated by
Workstations but have different servers are: GetAlarmSummary, CreateObject,
and DeleteObject. The ReadPropertyMultiple service is always executed by
Controllers but may have different clients. Other services may be initiated or
executed by different profiles, so they are not used in the classification.

This approach is adequate when devices strictly follow the BACnet specifica-
tion. This is not always the case, since the specification also allows vendors to
extend the set of services supported by their devices, and as such the behavior
of a device can be matched by the HBC to more than one role. To mitigate
this problem, we can extend the module with a learning phase. We assume that
a device sends more messages with services belonging to the correct role than
services of other roles. When the learning phase is over, the median number of
messages sent per service by each device is calculated and compared against a
threshold k; if a device initiates (or executes) a service exclusive to a role less
than k times, then that service is ignored in the classification.

The two different versions of HBC (respectively, without a learning phase and
with one) have benefits and limitations. The first approach immediately classifies
a device when an exclusive service is observed; however, if the first observed
message conveys a service belonging to the wrong role, the device is misclassified.
On the other hand, the second approach classifies devices with a delay, but the
results tend to be more accurate.

Distance-based classification (DBC). When the HBC cannot classify a device,
the DBC tries to do so by using similarities with known devices in the network.
The DBC measures similarity using three features of a device d obtained by
the inventory builder in Section 3.1: Vendor ID (an integer), the vendor-specific
Model Name (a string of characters), and Data Link Layer type (a category),
here denoted as fiii(d), fiv(d) and fvii(d).

To measure the distance between two devices di and dj using the Data Link
Layer type, we use a discrete distance:

rDLT (di, dj) =

{
0 , if fvii(di) = fvii(dj)

1 , otherwise.
(1)

The distance using the two vendor-specific features is defined as:

rV (di, dj) =

{
1 , if fiii(di) 6= fiii(dj)

L (fiv(di), fiv(dj)) , otherwise.
(2)

L(x, y) is the Levenshtein distance, which sums the number of insertions, deletions,
and substitutions needed to convert one string to another. We ignore identical
words in different positions and delete spaces in the Model Name string before
calculating rV . We then normalize the resulting distance into the range [0,1].

We compute the total distance between two devices as r(di, dj) = a ·
rDLT (di, dj) + b · rV (di, dj), with a < b, since devices of the same vendor and
model are more likely to have the same role.

For each unknown device di, the DBC loops through all classified devices dj
and computes r(di, dj). Then, it performs a variant of the k-Nearest Neighbors
classification algorithm: given a threshold distance r̄, it keeps three separate
counters of all classified Controllers, Routers and Workstations that are “close”
to di, i.e. those devices dj where r(di, dj) < r̄. Finally, the module selects the
greatest of the three counters and checks whether it is greater than a minimum
support level selected according to the network size (e.g., 2 for a small network,
10 for a larger one). The role whose counter fulfills the conditions above is
assigned to the device; if no role fulfills the conditions (i.e. if there is no greatest
evidence counter because of a tie or if the counter is lower than the minimum
support), the device remains unclassified and an alert may be generated to inform
the network operator that an unidentified device exists in the network. This
classification carries a little uncertainty and to avoid error propagation, devices
that are classified by DBC are not taken into account to classify another device.

3.3 Role-based intrusion detection

Effective intrusion detection requires, in addition to good detection rate at a low
false positive rate, alerts that are meaningful and provide enough information
and context to make them actionable. The content of the communication, and
the available context from situational awareness, enable building an effective
semantics-aware intrusion detection system. Here, we illustrate how device fea-
tures and values observed and inferred from the network can be used to build a
semantic intrusion detection model, in the style of the white-box framework [5].

White-box intrusion detection. A white-box detection model consists of a set
of rules that classify network traffic (single messages or groups of messages)
as normal or anomalous. These rules are expressed in features that capture
relevant properties of the traffic and devices, such as the properties observed
by the inventory builder (see Section 3.1). We consider numerical features (e.g.,
integers), nominal features (e.g., names), and compound features, which are tuples
of other features. Rules may be specified, for example, as a whitelist of allowed
services, or consistency rules between features, e.g., a device cannot have a Router
role and a vendor different than ‘Contemporary Controls’ in a specific network.
Rules can also be learned from ‘normal behavior’ captured in a training set.

Learning normal behavior, so that deviations represent attacks (or other
conditions of interest, e.g., malfunctioning devices), can be difficult because
normal traffic and attacks may have the same values on some features. However,
if we choose the right features, attacks will have values that are rare among
normal traffic on at least one of the features. For features that can take many
different values, such as numeric features, individual values may be rare even
for normal traffic. Yet rare values should indicate that a message is an attack.
Therefore, we group values into bins and consider the occurrence of bins rather
than individual values. For nominal features, we usually consider the binning
where each bin consists of a single element. For numeric features, we usually
consider bins that are ranges [vl, vu). For compound features, we consider bins
that are the product of such bins. The fundamental assumption in learning is
that attack traffic will lead to features yielding anomalous bins : bins that have a
low probability of occurring among normal traffic.

Our main goal is to find anomalies along with their causes (the features
yielding anomalous values) so they can be presented to an operator who can then
evaluate and address them. As discussed above, a role is an important indicator
of how a device should behave in a BACnet network. Below, we illustrate how a
role-based white-box framework can be defined. We focus on role-based features
that exploit the situational awareness information to detect the (otherwise hard
to find) types of attacks mentioned in Section 4.3. This could easily be combined
with additional features that have already proven to be effective in detecting
more general types of attacks in different settings [5, 9, 21].

The role-based detection model considers both specified and learned rules
(i.e. features with a labeling of their bins as normal or anomalous). The former
capture the type of services that devices in a certain role offer. For this feature,
we specify the normal values (bins) based on the BACnet specification. Notice
that this specification can be ported across networks. We also learn rules for
features that capture the number of messages (over a fixed period of time) that
devices in an role send and/or receive, in total or for a specific service. These
features are specific to a network and the normal bins are learned from training
data from this particular network.

Specification: types of messages. The BACnet specification [1] restricts the set of
services that a device should be able to use or offer depending on its BACnet
profile. Since behavior that does not match a device’s role can indicate that
it is compromised, we define, for each role, a whitelist (set of normal bins) of
allowed services. For those devices that were assigned a role by the classifier in
Section 3.2, the detector checks this whitelist against the observed messages. For
example, a Controller sending a WritePropertyMultiple request will raise an
alert, as only a Workstation should initiate that service. The IDS operator can
update the whitelist as needed, for example to address services added by vendors
or in reaction to false positives during detection.

Learning: number of messages. We expect the frequency of messages during
normal operation to be consistent over time; i.e. it should be close to frequencies
observed during training. Frequency is a feature of sequences of messages rather

than individual messages. To measure it, we group messages into fixed-length time
intervals and count the number of messages of interest within each interval. We use
a feature of the message to define whether it is of interest. For example, messages
of interest that have value (s, d) on compound feature (m.service,m.source) are
used to count how often a device d sends a message pertaining to a service s. We
will use f(s,d) to denote this feature. Thus, for [m1, . . . ,mn] messages in a time
interval, this gives:

f(s,d)([m1, . . . ,mn]) = #{i ∈ {1, . . . , n} | mi.service = s ∧mi.source = d}.

We can also look at the frequency with which a service is called, irrespective of
the calling device, which we expect to be proportional to the number of potential
clients. Thus, we introduce the feature fs given by:

fs([m1, . . . ,mn]) = #{i ∈ {1, . . . , n} | mi.service = s}/#D

where s is a service and D is the current set of all devices discovered. Note how
we take the average frequency of calls per (potential) client device by dividing
the total number of calls by the number of devices.

Our detection model is composed of a ‘normal bin’ for each frequency: to set
this interval, we use the range of frequencies observed among all time intervals
in the training data. To reduce false positives, we further extend this range by a
tolerance of 5%. We also expand our detection model by using the roles learned
during classification: specifically, we create a range for the frequency of service
use per each role. For each service s and each role r, we define the bounds of that
range as the minimum (maximum) of the bounds of all the ranges for fs,d, where
d are all the devices with role r. In the detection phase, we collect messages
over time intervals of the same length and compute the features above to check
whether they fall in the normal range (bin). Suppose that d is a new device
detected on the network, and that a normal range of values has not yet been
learned for f(s,d). We then perform detection using the range of the service for
devices in role r if d has been classified to role r, or that of fs (i.e. the normal
range of the service) if d has not been classified to a role. In this way, we can
always check f(s,d) against a reasonable range for any d ∈ D.

4 Validation

We implemented our system on top of SilentDefense5, a network monitoring
and IDS tool developed by Forescout. The network monitoring component has a
built-in BACnet dissector and parser: the parser provides the extracted fields to
the Deep Protocol Behavior Inspection engine of SilentDefense, which allows a
network operator to see all BACnet message details. The role-based classification
and intrusion detection modules were written in Lua on top of this engine.
Figure 2 shows, on the left, an example network map with a Router, a Controller,

5 https://www.forescout.com/platform/silentdefense/

Fig. 2. Network Map (left) and Device Description (right)

Wago 750-831 (Controller) FS-QS-1010 (Router) BMT-DIO 4/2 BMT-AI 8 BMT-AO 4

BACnet/IP

BACnet/IP

BACnet
MS/TP

BACnet
MS/TP

BACnet
MS/TP

Raspberry PiOur Solution

Wago
BACnet Configurator

(Workstation)

Mango Automation
(Workstation)

Fig. 3. Network diagram of the BACnet Lab.

a Workstation, and an Unknown device, which could not be classified. The same
Figure shows, on the right, the available properties of a selected controller node.

To validate our approach, we used a realistic lab facility and real-world data
(Section 4.1) to test device identification and role classification (Section 4.2) as
well as intrusion detection (Section 4.3).

4.1 Datasets

Dataset 1 comes from 10 minutes of traffic in our BACnet Lab, which is a
simulation environment containing real devices. The scenario implemented in this
lab is a small building with motion and temperature sensors that send signals to
controllers in order to switch lights and fans on or off.

Figure 3 depicts the following devices involved in the lab. The main building
controller (Wago 750-831) implements the system logic by reading and writing

inputs and outputs of the I/O modules. A BACnet Router (FS-QS-1010) connects
one IP network with one MS/TP network. Three devices connected with RS485
communicate via BACnet MS/TP (Metz Connect BMT I/O modules). A digital
I/O reads and writes digital inputs and outputs, such as motion sensors, light
bulbs or fans (with two states: on/off), whereas analog I/O modules read and
write analog inputs and outputs, such as temperature sensors, dimmable LEDs,
and fans with different speeds. A motion sensor, a LED bulb, and a fan are
connected to a BMT-DIO4/2 module, while a temperature sensor is connected
to a BMT-AI8 module. A BACnet Workstation can configure devices in the
network using the Wago configuration software. A second BACnet Workstation
monitors the lab and lets users modify setpoints using the Mango Automation
software. Finally, a Raspberry Pi is connected to the BACnet/IP network via the
bacpypes6 Python library. This device is only used for validating the intrusion
detection module, and is not included in the role classification results.

Dataset 2 comes from a real BACnet network from the campus of a Dutch
university. We analyzed 9 days of traffic, totaling 106GB of data and around 20
million BACnet messages. We did not have access to the topology of the real
network and the profiles of the devices. To validate our results, we extracted
information from the network traffic, such as vendor and model names, and we
were able to identify most devices by searching their profiles in vendor websites.
Furthermore, this dataset is only limited to the traffic observed on the IP backbone
network: thus, as mentioned in Section 3.2, no Field Devices could be discovered.

4.2 Classification results

We evaluated the effectiveness of discovery of devices and of their classification into
roles using Datasets 1 and 2. We also compared the use of only HBC against the
use of both HBC and DBC. These classification steps are described in Section 3.2.
Notice that for HBC we described two methods: immediate classification, and
classification at the end of a learning phase to address devices that extend the
BACnet specification. In all our experiments, the results were the same for both
methods, so we report only the results of HBC versus HBC+DBC. When choosing
the DBC parameters, we found good results with a=0.35, b=0.65 and r̄=0.3.

Table 3 shows the devices classified by HBC and HBC+DBC. In Dataset
1, both methods gave the same results, classifying 7 devices but being unable
to assign a role to the Mango Automation virtual machine. This is because
the virtual machine acted as an HMI rather than a workstation (it read and
wrote values to the controller, and displayed them to the user, without any other
complex activities). All the classified devices were assigned the correct role. To
test whether our DBC method was working as intended, we removed the role of
one of the I/O modules from the results of HBC. We then applied DBC to this
unclassified device; the method correctly computed the other two I/O modules
as being the “closest” to the unclassified device, and assigned it their role.

6 https://github.com/JoelBender/bacpypes

Table 3. Classification results for HBC and DBC

Dataset 1 (both methods had the same results)

Role
Ground
truth

Classification TP FP

Controller 4 4 4 0
Router 1 1 1 0

Workstation 2 1 1 0

Total 8 7 7 0

Dataset 2

Role
Ground
truth

Controller 219
Router 21

Workstation 1

Total 241

HBC

Classification TP FP

213 212 1
21 21 0
0 0 0

234 233 1

HBC + DBC

Classification TP FP

220 219 1
21 21 0
0 0 0

241 240 1

In Dataset 2, the system discovered 241 devices for which we were able to find
a ground truth via manual classification. It found 4 additional devices for which
we could not establish a ground truth, because we did not have any information
about their vendor or model name. Thus, we excluded them from validation.
Using either HBC or HBC+DBC, 3 of these devices are classified as Workstations
and 1 is not classified. Of the 241 devices in our data, 39 are BACnet/IP devices
and 202 use other BACnet variants. HBC was able to assign a role to only 234
of these devices; all the unclassified devices were Controllers whose traffic was
not exclusive to any role. Instead, HBC+DBC managed to assign a role to all
discovered devices. Since a learning period for HBC was not needed, the overall
classification step was considerably fast (<1h of network traffic was used).

Both methods had over 99% classification accuracy: all the Routers and
all the classified Controllers were assigned the correct role. One Workstation
was misclassified as a Controller, because it executed an exclusive service for
Controllers (ReadPropertyMultiple), without showing any behavior exclusive
to Workstations.

4.3 Intrusion detection results

We evaluated the attack detection capabilities of our role-based intrusion detection
module, and measured how many false positive alerts (FP) it raised on legitimate
traffic. We have already demonstrated the feasibility of our white-box anomaly
detection approach in a smart building setting [8], giving good trade-offs between
false positives and detection rate when applied on simulated cases as well as on
data from real-world networks. To expand upon this state of the art, we validated
our approach on the same testbed and datasets used in [8] and described in
Section 4.1. To showcase the importance of behavioral roles in helping intrusion
detection, we implemented the following synthetic attacks, in addition to those
already presented in [8].

All the attacks were launched using a Raspberry Pi. The Pi represents a
device that has been compromised by an attacker, e.g. as shown by [3], has been
recently added to the BACnet network, and is being used as an entry point to
send malicious messages.
Snooping. We simulate a reconnaissance attack launched from a compromised
Controller. To model this, we forcibly classify the Pi as a Controller during the
role classification step. We broadcast a Who-Is request to retrieve the address
and instance number of all devices in the network, and then send them a series
of ReadProperty requests to read their model name, vendor ID, and supported
capabilities. Note that a Controller is expected to be able to send Who-Is and
ReadProperty requests: what makes the behavior anomalous, is the large fre-
quency of such requests, i.e. the feature f(s,d) described in Section 3.3. Moreover,
as the device is new and therefore there is no ‘normal bin’ learned for that feature,
our detection falls back on the comparison between f(s,d) and the frequency for
other Controllers in the network.
Tampering. We simulate a tampering attack launched from a compromised Field
Device. To model this, we forcibly classify the Pi as a Field Device as before. We
send a WriteProperty request to the Metz Connect module governing the light
bulb, turning the bulb off. In [8], this attack could not be detected, as the system
only analyzed the request itself, and considered it legitimate. For a role-based
IDS, instead, this behavior violates the specified whitelist for Field Devices, since
they are restricted from initiating WriteProperty services.

Both attacks caused the Role-based Intrusion Detection module to raise alerts.
To evaluate the usability of our intrusion detection, we split Dataset 2,

containing approx. 9 days of network traffic, into 172 hours for training and
approx. 47 hours for testing. This choice of splitting is motivated by the need
to learn a full week’s worth of data during the training, to include time-driven
behaviors that might occur only on certain days. We followed the work of [17]
and computed both the total number of FP and the average rate of FP per hour
which were raised by the two detectors described in Section 3.3. We obtained:

– 0 FP (0 FP/h) for the specification-based types of messages detector;
– 304 FP (around 6.4 FP/h) for the learning-based number of messages detector.

We did not obtain any FP for the specification-based detector because the behavior
of all devices was consistent throughout the dataset; that is, once a device was
classified as belonging to a particular role, it kept behaving as appropriate for
that role. The performance of the learning-based detector is good when using
the default range tolerance of 5%; depending on the criticality of the monitored
traffic, raising the tolerance can further reduce the amount of FP.

Additionally, we evaluated whether our intrusion detection approach could
adapt well to new devices appearing on the network, without learning a model of
their behavior first. To do so, we modified the above experiment to simulate the
appearance of a new device, effectively performing leave-one-out cross validation.
For each one of the 241 classified devices, we ran a separate training phase
excluding all information from that device. Then, we included the same device in

the testing phase, comparing its frequency values with the generic ranges learned
for its role. Finally, we measured the increase in FP: on average, the number of
FP rose to 310 (around 6.5 FP/h), not impacting significantly the FP rate of the
overall system. This demonstrates the adaptability of our role-based approach.
The increase in alerts during cross-validation is explained by a small amount
(< 5%) of devices whose behavior is significantly different from all other devices
with the same role. As expected, when such devices are not taken into account
when building the range of values in the training phase, their ‘unique’ behavior
is detected as anomalous. We deem this small amount of devices as acceptable;
if a large number of devices would show different behavior for the same role, it
might be sensible to develop a more fine-grained classification into ‘sub-roles’.

5 Conclusions and future work

We proposed an approach that parses the network traffic of a building automa-
tion system to achieve three goals: (i) the discovery, characterization, and role
assignment of devices in the network; (ii) role-based intrusion detection; and (iii)
the creation of a dynamic network map to increase situational awareness.

By observing, parsing, and interpreting network messages, we extract useful
information about the devices, build a network map to provide operators with
details about their system, and detect attacks. Once an attack is detected, we
generate alerts that include semantic information helpful to the operators. We
implemented and validated our approach on real and simulated datasets.

As future work, we intend to deploy our solution on real operational envi-
ronments as part of SilentDefense; to extract more semantic information about
devices, possibly with the use of an ontology (e.g., an object with degree units is
a temperature sensor); and to develop heuristics to further refine the roles.

References

1. ASHRAE: BACnet - a data communication protocol for building automation and
control networks. Standard (2016)

2. Becker, R., Eick, S., Wilks, A.: Visualizing network data. IEEE Transactions on
Visualization and Computer Graphics 1(1), 16–28 (1995)

3. Brandstetter, T., Reisinger, K.: (in)security in building automation how to create
dark buildings with light speed. In: Blackhat (2017)

4. Caselli, M., Zambon, E., Amann, J., Sommer, R., Kargl, F.: Specification mining
for intrusion detection in networked control systems. In: 25th USENIX Security
Symposium. pp. 791–806 (2016)

5. Costante, E., den Hartog, J., Petković, M., Etalle, S., Pechenizkiy, M.: A white-box
anomaly-based framework for database leakage detection. Journal of Information
Security and Applications 32, 27–46 (2017)

6. Domingues, P., Carreira, P., Vieira, R., Kastner, W.: Building automation systems:
Concepts and technology review. Computer Standards & Interfaces 45, 1–12 (2016)

7. Esquivel-Vargas, H., Caselli, M., Peter, A.: Automatic deployment of specification-
based intrusion detection in the BACnet protocol. In: Proceedings of the 2017
Workshop on Cyber-Physical Systems Security and PrivaCy. pp. 25–36 (2017)

8. Fauri, D., Kapsalakis, M., dos Santos, D., Costante, E., den Hartog, J., Etalle, S.:
Leveraging semantics for actionable intrusion detection in building automation
systems. In: Critical Information Infrastructures Security. pp. 113–125 (2019)

9. Fauri, D., dos Santos, D., Costante, E., den Hartog, J., Etalle, S., Tonetta, S.: From
system specification to anomaly detection (and back). In: Proceedings of the 2017
Workshop on Cyber-Physical Systems Security and PrivaCy. pp. 13–24 (2017)

10. Holmberg, D.: BACnet wide area network security threat assessment. Tech. rep.,
NIST (2003)

11. Johnstone, M., Peacock, M., den Hartog, J.: Timing attack detection on BACnet via
a machine learning approach. In: Proceedings of the 13th Australian Information
Security Management Conference. pp. 57–64 (2015)

12. Kastner, W., Neugschwandtner, G., Soucek, S., Newman, H.M.: Communication
systems for building automation and control. Proceedings of the IEEE 93(6),
1178–1203 (2005)

13. Mundt, T., Wickboldt, P.: Security in building automation systems - a first analysis.
In: International Conference On Cyber Security And Protection Of Digital Services.
pp. 1–8 (2016)

14. Pan, Z., Hariri, S., Al-Nashif, Y.: Anomaly based intrusion detection for building
automation and control networks. In: IEEE/ACS 11th International Conference on
Computer Systems and Applications. pp. 72–77 (2014)

15. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for
network intrusion detection. In: IEEE Symposium on Security and Privacy. pp.
305–316 (2010)

16. Tonejc, J., Guttes, S., Kobekova, A., Kaur, J.: Machine learning methods for
anomaly detection in BACnet networks. Journal of Universal Computer Science
22(9), 1203–1224 (2016)

17. Urbina, D., Giraldo, J., Cardenas, A., Tippenhauer, N., Valente, J., Faisal, M.,
Ruths, J., Candell, R., Sandberg, H.: Limiting the impact of stealthy attacks on
industrial control systems. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. pp. 1092–1105 (2016)

18. Webster, S., Lippmann, R., Zissman, M.: Experience using active and passive
mapping for network situational awareness. In: 5th IEEE International Symposium
on Network Computing and Applications. pp. 19–26 (2006)

19. Wendzel, S., Tonejc, J., Kaur, J., Kobekova, A.: Cyber Security of Smart Buildings,
chap. 16, pp. 327–351. John Wiley & Sons (2017)

20. Yüksel, O., den Hartog, J., Etalle, S.: Reading between the fields: Practical, effective
intrusion detection for industrial control systems. In: Proceedings of the 31st Annual
ACM Symposium on Applied Computing. pp. 2063–2070 (2016)

21. Yüksel, Ö., den Hartog, J., Etalle, S.: Towards useful anomaly detection for back
office networks. In: Information Systems Security. pp. 509–520. Springer (2016)

22. Zheng, Z., Reddy, A.: Safeguarding building automation networks: THE-driven
anomaly detector based on traffic analysis. In: 26th International Conference on
Computer Communication and Networks. pp. 1–11 (2017)

23. Ziegenfus, S.: BACnet R© is in a “family way”. ASHRAE Journal 58(9), 100–102
(2016)

