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Abstract—The lack of automation is one of the main issues
hindering the broad usage of high-level Cyber Threat Intelligence
(CTI). Creating and using such information by capturing Tactics,
Techniques and Procedures (TTPs) is currently an arduous man-
ual task for Cyber Security Incident Response Teams (CSIRT).
For CSIRTs, a Network Intrusion Detection System (NIDS)
automates the detection of cyber threats. It provides relevant
information about alerts to the analysts. This information could
generate CTI reports to help others better protect themselves
from similar attacks. Due to the demanding work involved in
manually creating high-level CTI reports for multi-host incidents,
automating this process has become increasingly important.

In this paper, a solution is presented to automate the creation of
verifiable high-level cyber threat intelligence reports by mapping
chains of alerts to TTPs. The solution enables visualisation of
attack chains and tactics used, but also manual analysis and
validation of the reports created. The proposed approach is
evaluated by comparing generating reports with existing CTI,
validating any additional TTPs found. The evaluation shows that,
not only it was able to match existing reports, but it was also
able to improve the knowledge about these threats.

Index Terms—Cyber Threat Intelligence (CTI), Automation,
Tactics, Techniques and Procedures.

I. INTRODUCTION

The threat of cyber attacks is an ever-present concern in
modern networked systems. Security analysts continuously
monitor their networks for threats and evidence of cyber
attacks. A Network Intrusion Detection System (NIDS) can
provide alerts regarding potentially malicious events to ana-
lysts, but these need to be interpreted and analysed. If possible,
analysts collect and share information about incidents to help
others. This type of shared information is called Cyber Threat
Intelligence (CTI). It includes analysed knowledge about ca-
pabilities, infrastructure, methods and victims of cyber threat
actors. CTI can be organised based on its level of maturity:
low-level for Technical CTI as Indicators of Compromise
(IoCs), and higher-levels for Tactical, Operational CTI and
Strategic CTI as Tactics, Techniques and Procedures (TTPs),
Attacker Identity and Goals [1, 2].

After analysing and documenting threats in their network,
analysts can publish CTI reports so others may benefit from
what they learned. This information is easy to generate (and
use) for low-level CTI with automated structures. Lists with
allowed and blocked indicators are an example of a commonly

used method for IoCs. By contrast, due to the lack of automa-
tion, high-level CTI requires a lot of manual work, both during
creation and use [3, 4, 5]. As a result of the currently high
effort needed to generate it, only a limited amount of reports
provide higher-level CTI such as TTPs.

The growing number of programs sponsored by national
agencies, non-profit institutions and commercial organizations
to share intelligence among community members show the
importance of sharing CTI for defence. Examples include
several country-specific or worldwide information sharing and
analysis centres (ISACs) [6, 7], the Cyber Threat Alliance [8]
and government initiatives such as CISA’s AIS [9] and the
NCSC-UK’s CISP [10]. Usually, sharing intelligence is a
prerequisite or allows members to access more intelligence.
High-level CTI tends to be more valued than low-level [8], as
the first is more difficult for the attackers to change.

In a previous work, we automated the use of high-level CTI
[11], further increasing the value of sharing it. But there is still
the need for an automated way of generating this information
to reduce its scarcity [12]. To address this latter issue, we
investigate the following research question: RQ: How can the
creation of high-level CTI reports about network incidents
be automated? This question leads us to the following sub-
questions: SQ1: How can the output from a NIDS monitoring
multiple hosts be translated into CTI automatically? SQ2: How
to enable the validation of automatically generated CTI by an
analyst when necessary before sharing it?

Our approach takes a set of correlated events classified as
alerts as a starting point. NIDS and supporting tools typically
provide some basic methods to correlate network events. We
define an underlying structure based on alert graphs due to
its compatibility with most correlation techniques [13]. We
extract chains of alerts out of this graph, building simplified
Knowledge Graphs (KG) called Alert Chains. These chains
depict the attack propagation between hosts in different attack
phases. We apply a map between alert types from the NIDS
into TTPs, translating the chains into structured high-level CTI
and generating machine-readable reports. As a type of KG,
chains are capable of automatically generating and presenting
CTI in both machine- and human-readable forms [14, 15, 16].
We also add the possibility of ranking to prioritise or filter the
most important chains, providing additional structure to the
analyst and helping visualise the CTI and related alerts.979-8-3503-2445-7/23/$31.00 ©2023 IEEE



We evaluate our approach on publicly available datasets
containing malicious network traffic related to malware fami-
lies and botnets. First, for the few samples with already avail-
able high-level CTI, we compare our automatically generated
reports with the available CTI and show that our approach
finds the TTPs they report, as well as additional ones. For the
new TTPs our solution finds, we validate their correctness by
looking at the network flow. Next, we apply our approach to
a more extensive set of samples, including new families to
provide a broad qualitative analysis of the generated CTI.

Our main contributions are: (1) Providing a method to
automatically generate high-level CTI from network incidents,
with sound reports that are even more complete than manually-
created ones. (2) Enabling verifiability of the generated CTI,
allowing analysts to publish reports with less effort. (3)
Confirming that it works with multiple NIDS.

Below, after discussing related work on automated CTI
creation in Section II, we describe our general approach
in Section III before giving a concrete implementation in Sec-
tion IV. We evaluate the approach in Section V, then discuss
how we fill the identified gap in Section VI. Finally, we
provide conclusions, limitations and future work in Section VII

II. RELATED WORK

We outline recent works on creating high-level CTI auto-
matically. First, we describe those creating CTI out of existing
information by converting or aggregating it. Then, we focus on
works that build CTI out of raw host data. Finally, we discuss
how none of them covers network data with multiple hosts.

Most works on automatically creating high-level CTI focus
on generating unstructured (human-readable) reports from
structured (machine-readable) CTI [14, 17]. Others go the
opposite direction, extracting structured CTI from existing
unstructured reports, usually by applying Natural Language
Processing (NLP) [18, 15, 19], and a few use the MITRE
ATT&CK Framework to correlate it to TTPs [20]. Notably,
Noor et al. [21] extract TTPs from unstructured CTI reports
with NLP and create attack patterns for different actors based
on attributed reports. They test patterns with different classi-
fiers to improve the accuracy of their attribution.

Some works use CTI aggregation to reduce the known
problem of low intersection between CTI sources. Modi et al.
[22] aggregate CTI from several sources, correlate reports
and create links between attack events previously considered
unrelated. Kim et al. [23] also aggregate CTI data from
different sources, then matches it with behaviour detected by
malware analysis tools to produce new network security rules.

A significant number of recent works mention the need of
automating the process of consuming [3, 4, 5] and producing
CTI from raw data [24, 25]. Specifically, Haque and Krishnan
[12] design a framework to allow controlled CTI sharing
between multiple entities. They propose a conceptual module,
referred to as a Threat Detection System, which would have
the capabilities of generating the required information for
automated CTI. They emphasize that there is still a need of
creating such a module somehow.

In that direction, Scarabeo et al. [26] use text mining to map
raw log events to CAPEC attack patterns for local analysis.
Navarro et al. [27] create attack models from raw log events
and match them with CTI sources. Similarly, on a previous
work [11], we automated the use of available high-level CTI
by linking MITRE ATT&CK TTPs and alerts to create and
match detectable patterns with existing reports. All of these
works extract and match patterns for local analysis without
creating shareable reports. One approach that comes close to
our methodology is the framework created by Landauer et al.
[28], which combines IoCs and TTPs from raw host-based log
data into meta-alerts and generates CTI from it.

The main focus of these works is either structuring and
merging low-level CTI out of existing information or gen-
erating data on host-based scenarios. None of these works
automatically generates high-level CTI reports on networks or
propose a method of doing it. Therefore, despite the promising
work and the identified need, the gap for for further automation
in generating high-level CTI about attacks involving multiple
hosts in a network remains unaddressed [24, 12, 25].

To address this gap, we build on top of our previous work
[11], linking alerts and TTPs in the opposite direction and
greatly expanding the mapping to other NIDS to automatically
generate CTI reports about multi-host incidents in networks.

III. APPROACH

Our goal is to automate the creation of shareable high-level
CTI reports using alerts generated by a NIDS. Given this goal
and our scope, we determined the following requirements for
the approach: (1) The shared (high-level) information must be
interpretable and verifiable by an analyst and other parties.
Thus, we use TTPs from MITRE ATT&CK framework as the
standard way to express the threats [29]. (2) It needs to be
aware of multiple hosts in a network, thus we apply chains.
(3) It must work with new threats. In that sense, we do not rely
on signature-based or tag-based approaches like clustering.

Figure 1 shows our approach. It starts with the Discovery
of Structures, organising previously correlated alerts from a
network into chains representing the propagation of an attack
and its phases. Next, Ranking and Mapping, with an optional
chain rank to help experts prioritise or filter information when
they need to analyse a lot of CTI. It then automatically maps
alerts to TTPs and extracts IoCs to include in a CTI report. The
chains allow the creation of both machine-readable reports for
automated sharing and, as a type of Knowledge Graph (KG),
human-readable ones for easier validation and sharing.

A. Discover Structure

We start from a NIDS monitoring the network traffic and
correlating alerts when detecting suspicious communication.
The collection of correlated alerts received from the NIDS as
an input can be captured and depicted as a graph.

Definition 1 (Alert Graph). An Alert Graph is a Multidigraph
G := (H,A) comprising a set H of hosts in the network
involved in alerts and a set A of NIDS alerts expressed as
directed labelled edges.



Fig. 1: Approach Overview

We give some assumptions and notation. Each alert a ∈ A
is such that a = (src, dst, (ty, t, n, ob)). It includes involved
source src and destination dst entities, the event type ty, the
time t of occurrence, the amount n of times this combination
repeats within a predefined time window, and a set ob of
related observables. We assume a function to extract each
element written in post-fix notation. Thus, G.H for the hosts in
graph G, a.src for the source of alert a, etc. Where applicable,
we lift functions to sets e.g., A.src = {a.src | a ∈ A}. For
a set of sets, we use

⋃
to denote the union of the contained

sets e.g.,
⋃
A.ob = {o | ∃a ∈ A : o ∈ a.ob}.

Each event type ty has a severity sev ranging from Nothing
(0), Informational (1), Low (2), Medium (3), High (4) to
Critical (5). To simplify notation, we use a.sev as a shorthand
for a.ty.sev. The list of observables in ob includes the involved
low-level indicators such as IPs, URLs, domains and file
hashes, each marked with their type.

For a host h ∈ H , we look at the alerts leading to h
with h.aIn = {a ∈ A | a.dst = h}, and alerts originating
in h with h.aOut = {a ∈ A | a.src = h}. We consider
hosts involved in those alerts as the the inward neighbourhood
h.In = h.aIn.src = {h′ ∈ H | ∃a ∈ A : a.src = h′∧a.dst =
h} and outward neighbourhood h.Out = h.aOut .dst = {h′ ∈
H | ∃a ∈ A : a.src = h ∧ a.dst = h′} of host h.

Alert Graphs are in tune with the output of most correlation
techniques, including attack graphs and attack trees [13].

The graphs allow generating at least some machine-readable
CTI already, but CTI reports can be human- or machine-
readable, respectively called unstructured and structured in-
formation [21]. We want the possibility of creating human-
readable reports if needed, both for sharing and for validation.
Thus, we extract KGs out of it, as they also allow automated
creation of human-readable CTI reports [14, 15].

We introduce the following two terms: A sequence of alerts
a1, . . . , an is time consistent when i ≤ j =⇒ ai.t ≤ aj .t,
i.e. its timestamps are non-decreasing. A graph C is rooted if
there is a node h, called root, such that all nodes and edges
in C are part of some time consistent path starting in h.

From the graphs, we build time-consistent, possibly branch-
ing, connected sequences of alerts called Alert Chains. These
sequences represent attack phases and the propagation between
hosts [30]. In building chains, we ignore minor severity alerts
(nothing and informational) as we do not consider them
sufficient evidence of an attack reaching the destination host.

Definition 2 (Alert Chain). An Alert Chain is an a-cyclic
rooted subgraph of G′ = (G.H, {a ∈ G.A | a.sev > 1}). We
use Ch to denote an Alert Chain with h as a root, Ch.H and
Ch.A for respectively the hosts and alerts in this chain and
G.AC for a set of Alert Chains covering all alerts in G′.

Figure 2 shows an example of multiple Alert Chains in an
Alert Graph, with alerts numbered in the order they occur. In
this case, there are four chains in G.AC. There is no need for
chains Ch2 and Ch6, as any sub-graphs rooted in H2 or H6
are already covered. At the same time, Ch7 is not included in
Ch1, lest creating a loop. Thus, it generates a separate chain
and guarantees any chain as a KG: a mostly-acyclic directed
graph or a Directed Acyclic Graph (DAG) in some cases. KGs
can have loops if every instance is in a subset of a separate
unique classification, a property called subsumption.

Fig. 2: A simple Alert Graph with multiple Alert Chains

As in Figure 2, there can be multiple chains in a single
Alert Graph. In building the chains, only information relevant
to finding the path of the attack propagation is included rather
than all potential information about this path. But all auxiliary
information is helpful later when analysing the incident and
validating the CTI for it. To this end, we introduce the notion
of enriching a chain, which gathers all alerts relevant to the
chain. Below, we define these relevant alerts per host before
collecting all of them.

Definition 3 (Relevant Alerts). An alert is relevant to a chain
if it involves the root node, or if it involves a host after that
host is first seen in the chain:



first(hi, Ch) =

{
0 if hi = h

Min((Ch.A ∩ hi.aIn).t) otherwise

Rel(hi, Ch) = {a ∈ hi.aIn ∪ hi.aOut | a.t ≥ first(hi, C)}

The function first captures the first moment in the chain
with an indication that a host is known, and maybe compro-
mised, by an attacker. The root of the chain, as the starting
point, is considered known from the beginning (time=0). Any
other host is considered known as soon as an alert of the chain
reaches this host. By Definition 2, the set of incoming alerts
in hi from the chain is guaranteed to be non-empty. Thus, the
relevant environment of hi in relation to a chain Ch, given by
Rel(hi, Ch), comprises those alerts involving hi and which
occur after hi is known in that chain. The alerts in this set are
subsumptive by nature. With that, we can obtain all relevant
alerts connected to the hosts of a chain to enrich that chain.

Definition 4 (Relevant Alerts Set). The enriched chain, de-
fined by the relevant alerts set, contains all alerts that are
relevant to any host in the chain:

Rel(Ch) =
⋃

hi∈Ch.H

Rel(hi, Ch)

Alert Chains do not replace current alert correlation tech-
niques employed by the NIDS, but rather use their output
to generate CTI. It employs a widely-used, KG structure
[16, 17, 14]. The chains provide structured information about
the observed events in the network. An event, as a consequence
of a step taken by an attacker, can be linked to their behaviour
throughout the execution of the attack [31]. The chains can
complement any correlation technique that generates graph-
like structures or compatible outputs, as a considerable amount
do [32], and the result reflects different phases of the attacker’s
behaviour. This behaviour can be described by the Tactics,
Techniques and Procedures deployed by them.

In the next section, we define how we output these TTPs
from alerts to generate shareable reports.

B. Alert Map and Report Generation

Having found which alerts are most relevant to describe an
incident using the enriched alert chains, the next step translates
it into useful CTI. Bromander et al. [1] categorize CTI by
assigning a Detection Maturity Level (DML). At low levels
(DML 1 to 2), we have IoCs like those our alerts already
provide as observables. High-level CTI includes TTPs (DML-
3 to 6). To be able to provide high-level CTI, we create a map
between every alert in the NIDS and related TTPs.

We refer to the MITRE ATT&CK framework as the most
widely adopted way of expressing TTPs [20, 18, 15]. For each
event type used by the NIDS for alerts, we map it to one or
more TTPs in the MITRE ATT&CK framework [11]. Only a
subset of the TTPs relate to behaviour that can be observed in
the network. Thus we only need to consider a subset NM of
so-called network-mappable TTPs from those in the MITRE
ATT&CK matrix [33].

Definition 5 (Alert to TTP mapping). A mapping function a2n
returns TTPs mapped to an event type as a2n : AlertTypes →
P(NM ), with a.a2n as a shorthand for a.ty.a2n.

The mapping function a2n gives the network-mappable
TTPs, including sub-techniques, for each event type and thus
for each alert. With this function, we can generate high-level
CTI from the alerts in a chain. Figure 3 shows an example
with the highlighted alert Remote Blacklisted Operation on file
(recommended from the NIST National Vulnerability Database
(NVD)) mapped to the Techniques T1570 (Enterprise) and
T0867 (ICS), both as a Lateral Tool Transfer.

Fig. 3: Analysts can Validate the Reports with the Chains

The IoCs are the observables provided by the alerts. Some
observables, while possibly meaningful for the local security
analyst, are unsuited for inclusion in the report. For exam-
ple, well known and trusted IPs, including some local ones,
should not go in the CTI report. A set of allowed indicators
WL excludes such observables from IoCs in CTI reports if
necessary.

A report is a collection of CTI related to a specific incident
or threat. For shareability and automated use, it is convenient
to have data in structured machine-readable formats. A struc-
tured CTI report can be automatically produced by extracting
related IoCs and TTPs from the relevant alerts of a chain Ch.

Definition 6 (Report generation). Assuming a given set WL
of allowed observables, a structured report r = (iocs, ttps)
containing both IoCs and network mappable TTPs can be
generated out of an alert chain Ch by the function report:

report(Ch) = (
⋃

Rel(Ch).ob \WL,
⋃

Rel(Ch).a2n)

= ({o | o /∈ WL ∧ ∃a ∈ Rel(Ch) : o ∈ a.ob},
{t | ∃a ∈ Rel(Ch) : t ∈ a.a2n})

For a set of chains we obtain a report by collecting all the
IoCs and TTPs for each chain. While the generated report r
is, by definition, structured (machine-readable) metadata, the
KG construction also allows transforming this into a human-
readable report if needed. Additional information such as Cy-
ber Kill Chain phases, Common Vulnerabilities and Exposures
(CVE)s, and Courses of Action are easily obtainable from the
TTPs. We implement an example on Subsection IV-C.

In the next section, we show how our approach also allows
the analyst to interpret and validate the reports before sharing.



C. Interpretation and Validation

We rank the chains to allow an analyst to focus on the
most crucial chains detected in the network. It prioritises the
most vital information to analyse more critical cases first if
necessary. To this end, we first define the severity of a chain.

By Definition 1, any alert has a severity associated with
its type. The severity of the alerts in a chain provides the
severity of a chain. If a chain only contains low-severity alerts
(a.sev ≤ 3), it does not matter how many there are. For chains
without high-severity alerts, the maximum severity that does
occur applies. But the severity scales with the number of high-
severity alerts (a.sev ≥ 4). For those, we sum their severity.
Thus, both the level of severity and the number of such alerts
have an impact on the chain severity.

Definition 7 (Chain Severity). The Severity of a chain Ch is
given by a Sev function based on the severity of its alerts:

Sev(Ch) =


Max(Ch.A.sev) if Max(Ch.A.sev) ≤ 3∑
{a.sev | a ∈ Ch.A otherwise

∧a.sev ≥ 4}

Their severity is a crucial factor in the importance of a
chains. Depending on the case, there are other aspects to
consider, such as prioritising high-volume nodes and reducing
clutter. In that sense, alert chains are scored and ranked based
on the use case scenario. It is a way of showing the most vital
information as a priority. This depends on the environment,
the type of devices, and many other factors. So our approach
includes an optional ranking system that could be implemented
based on each case. The rank adds actionability to the report
generation. An analyst can use the ranked chains to examine
the automatically generated CTI. In Section IV, we give a
concrete example of a ranking function rank : G.AC → N
for a NIDS.

By definition, any Alert Chain Ch is a KG, i.e., a directed
mostly-acyclic graph. With that, automatically generating
human-readable reports from the output r is also possible by
using its (KG-equivalent) metadata. Figure 3 depicts a simple
example where the description was automatically generated
based on the graph. That description is used for human-
readable versions of the report but also shown in the chains,
allowing the verifiability of the reports created.

Putting all of the above definitions together, a shareable and
verifiable report r can be automatically generated by following
a simple process: (1) Build an Alert Graph from correlated
alerts in the network, (2) Create Alert Chains that represent
the behaviour of an attacker acting in the network in different
phases, (3) Map the relevant alerts to TTPs, (4) Aggregate
those TTPs and the IoCs involved in them, and then show this
to the analyst to validate the report if needed.

After showing our general approach for structuring relevant
CTI and automatically generating machine-readable reports
from network data, the following section presents a concrete
implementation of this approach.

IV. IMPLEMENTATION

Here we detail our implementation of the approach de-
scribed in the previous section. In particular, we look at:
(A) The mapping for the state-of-the-art NIDS used for the
experiments and how to apply this to other NIDS. (B) Options
for the chain ranking function which remained abstract in the
previous section. (C) A concrete choice for the observables,
with its lists and the format used in the report generation.

A. Network CTI Mapping

After collecting chains of alerts detected in the network, we
use a map between alert types and TTPs defined in Subsec-
tion III-B to generate a list of techniques used in those chains.

In our implementation, we use TTPs from MITRE
ATT&CK framework [29] due to its overall acceptance in
literature [34, 20, 18, 15] and its widespread use by CTI plat-
forms [8]. Using different frameworks is also possible, such
as including Lockheed Martin’s Kill-Chain and Mandiant’s
Attack Life Cycle [34] to represent the attack phases.

The list of alerts used in our implementation includes the
event types suggested by both the NVD and the Industrial Con-
trol Systems Cyber Emergency Response Team (ICS-CERT).
We map alerts in the chains to TTPs in the selected NIDS
based on their type. We define the alert mapping function
between the event types in the selected NIDS and TTPs.

We produced an inversed version of the mapping from our
previous work [11]. We also create additional maps for two
other NIDS: Zeek and Suricata. Using different NIDS changes
how TTPs are mapped. On Zeek, type names and purposes are
more general, making it difficult to map to the latest MITRE
TTPs and its sub-techniques. On Suricata, rules receive tagged
TTPs based on their type, as shown in Example 1 for Figure 3.

Example 1: Summary of a Mapped Suricata Rule Triggered

alert smb $HOME NET any → $HOME NET any (
msg:“Remote Blacklisted Operation on file”; (...)
threshold:type both, track by src, count 1, seconds 60;
metadata: mitre tactic id TA0040, mitre technique id
T1570, ics tactic id TA0109, ics technique id T0867;

)

Mapping alerts in a chain results in TTPs for inclusion in
a report. Next section discusses our implementation of the
ranking to help analysts prioritise chains.

B. Chain Building and Ranking

We use alerts correlated by adapted Alarm Graphs [35] as
input in our implementation. To create the chain set (G.AC
in Definition 2) to be ranked, we generate rooted sub-graphs
by, starting from the source host h of the alert with the lowest
timestamp, iteratively traversing all outgoing edges in order
of time. After the root, we consider only those alerts with a
timestamp greater or equal to the edge we used to reach the
node, ensuring time consistency. We omit ‘back edges’ which
would create a loop. Once there are no more alerts to add to
the current chain, we build the next uncovered chain in the
graph. Non-overlapping chains avoid redundant information.



Note that the chain-building order impacts the resulting
G.AC. With a different order, alert distribution over the chains
changes. Here, time-consistency gives the attack propagation.

To rank the chains, we provide several features that help
identify the most crucial chains in different settings. Adjusting
the ranking to the use case is possible by choosing specific
features. We use took inspiration from alert correlation tech-
niques and graph-based CTI aggregation to choose suitable
ranking parameters [15, 35]. The selected features are Severity
(Definition 7), Depth, Popular Nodes, and Influential Nodes.
Below, we discuss why we consider each of them relevant.

Ranking Formula: Our implementation of the ranking uses
the combination of the features (Fi) mentioned above and an
associated weight factor (xi) giving the score as:

∑
(xi ∗Fi).

1) Severity: High-severity alerts are analysed first. Chains
with many high-severity alert types, given by the chain Sever-
ity score Sev of Definition 7, are more important.

2) Depth: Chains with more hops, i.e., intermediate steps in
the attack, may give a more complete view of the propagation.
Thus, the chain depth, given by the length of its longest path,
is also considered an important factor when ranking chains.

(a) Popularity Degree Centrality (b) Influence Eigenvector Centrality

Fig. 4: Popularity and Influence in a Graph of Network Alerts

3) Popular Nodes: Some chains contain the hosts most
targeted by alerts. We call them popular nodes. Giving chains
with these nodes a certain degree of importance during anal-
ysis can help highlight focal points of attacks. The popularity
of a node is the inward degree centrality in relation to all
chains: its ‘in-degree’ in the union of all chains in G. So
h.Pop = #(h.aIn ∩

⋃
G.AC.A). Figure 4a shows one

example. The chain popularity (Pop#) is given by the number
of devices with the maximum popularity in the chain.

4) Influential Nodes: In contrast to popular nodes, some
can be the source of a high quantity of alerts. We refer to
them as influential nodes. Considering O(h) = #(h.aOut ∩⋃

G.AC.A) as the outward degree centrality of a node h,
we define the influence of a node as the inverse of its
normalised eigenvector centrality in relation to the whole,
given by h.Infl =

∑
u∈h.Out(O(h)−1 × u.Infl). Influence

is equivalent to the PageRank algorithm [35] applied to the
reverse of the graph. Figure 4b shows an example.

We selected the features above for the setting used in
the evaluation in the next section. In tuning the ranking for
more specific environments, additional features may apply, e.g.
Criticality of devices (Purdue Levels) and Frequency of Types.

The ranking score provides analysis priorities for an an-
alyst, but if there is an overwhelming number of chains it
may be necessary to limit how many to consider. Using the
ranking score by setting a minimum threshold or taking only
top-scoring chains allows this filtering. Our implementation
supports setting a maximum number of top chains through a
configuration file.

C. Generate CTI Report

Observables add possible IoCs to the generated reports. As
observables, we consider IPs, URLs and domain names of the
involved hosts or otherwise mentioned in the alerts. The list
of allowed observables prevents including legitimate sites. For
the list of allowed ones, we use all observables internal to the
monitoring organization and ‘well-known’ ones, including the
top-known domains and their IPs.

We generate reports using the Structured Threat Information
Expression (STIX) 2.1 format due to its wide acceptance and
versatility [2, 36]. In this format, CTI data are structured
objects called STIX Domain Object (SDO)s, and reports are
Bundles of CTI. It is important to note that when multiple
alerts in a chain are related to the same TTP, it is possible to
represent that to an analyst locally. But current structured CTI
formats do not support this representation. Thus, the shareable
exported metadata only contains each observed TTP once.

To complement this information, we obtain additional data
from MITRE about each of the TTPs, including respective Cy-
ber Kill Chain phases in some cases. If mitigation techniques
or efforts to stop an attack exist for individual TTPs, they are
also added as a Course Of Action.

Applying a similar mapping to host data logs locally [28] or
while analysing available executables [37] would allow adding
host-based information to the reports, including CVE, Com-
mon Vulnerability Scoring System (CVSS) and host-related
TTPs. But because those steps are out of scope for this work,
the report generation only takes the CVE numbers the MITRE
mapping step provides to include them as Vulnerability objects
in the final report.

The next section evaluates our solution by applying it
to different sandboxed scenarios available and analysing the
reports created.

V. EVALUATION

A. Experimental Setup

1) Datasets: In these experiments, we employ a dataset
including different attack scenarios in a network. The goal is
to evaluate if the TTPs in the machine-readable CTI reports
automatically generated by our solution out of attacks ob-
served in network traffic match or even improve over existing
manually created reports. Also, it tests how a Cyber Security
Incident Response Team (CSIRT) can, if needed, validate the
automatically generated CTI reports.

To select samples for tests, we focused on common threats
such as Malwares and Botnets. We also looked for datasets
with previously verified analyses and with, at least in some
cases, CTI available for validation. The datasets used are:



• Ransomware PCAPs: Sand-boxed ransomware samples
from different malware families [38], with more than
200GB in PCAPs. Each PCAP is an instance related to
one of these families. The number of samples varies by
family. PCAPs contain network traffic and I/O operations.

• Botnet PCAPs: The IoT-BDA Botnet Analysis Dataset
has 4077 unique IoT botnet samples. It includes ELF files
for the botnet samples, captured behaviour on systemcalls
and the PCAPs for the network traffic.

Berrueta et al. [38] created the malware samples in a sce-
nario where it encrypts a shared directory (server and client),
with additional traffic in some cases, such as DNS requests and
communication with Command and Control (C&C) servers.
Thus, intersections on TTPs is an expected consequence. Also,
as a note, we show the validation without sub-techniques
because available CTI for these samples do not include them,
and we need to compare the generated ones with that.

2) Validation: To validate our approach, we compare two
types of reports related to the same samples regarding the
high-level CTI information they provide: already available
reports extracted from CTI sources, and reports our solution
automatically generates. It is important to note that the
low availability of higher-level CTI (TTPs and above) on
current reports is a known problem [11]. Consequently, we
execute the validation with samples related to Cerber and
REvil/Sodinokibi malware families, as they have at least some
network-related high-level CTI available.

With our validation metrics, we evaluate two factors in the
generated CTI in regards to the TTPs it contains: Correctness
and (relative) Completeness. Relative Completeness shows that
the automated CTI report contains at least those TTPs included
in the already available (manually created) CTI. It means that
the automated analysis is sufficiently comprehensive to provide
generated reports with at least as much information as existing
ones. Correctness means that provided TTPs are sound, which
means they are present in the attack. We assume TTPs in
existing CTI reports are sound ones. Any additional TTPs we
find provide an improvement compared to the existing reports.
Provided, of course, that they are sound ones. We validate
those cases using the mapped alert and the mapped CTI.

3) New CTI Reports: After validating with pre-existing
CTI, we run our approach on the remaining datasets, creating
high-level CTI for them as well. As there is nothing to compare
to, the tests are more straightforward. We check whether
the solution can identify and represent malicious chains by
outputting their resulting high-level CTI as structured reports
over a broad set of scenarios.

B. Results

In this section, we present the results of our tests.
1) Validation: Figure 5 and Figure 6 show the results of

applying the solution to REvil and Cerber respectively. The
header line denotes an existing report, with its TTPs marked as
squares. Other lines represent samples used in our validation,
and TTPs generated automatically by our methodology as
circles, with a summary of additional TTPs on the right.

Fig. 5: Results for Validation with REvil

(a) Completeness: Figure 5 shows the results for the REvil
samples. The validation resulted in five different TTPs detected
across the malware instances. The automated reports gener-
ated for (2020-Mar-23 and 2021-Jan-23) achieved maximum
completeness. They produce at least all TTPs expected from
existing reports. The same happens with Cerber samples, as
seen in Figure 6. The report automatically generated for the
sample 2016-Oct-04 matches the single TTP in existing reports
about that sample [38]. It is interesting to note that, for both
families, there is a match of the techniques detected even in
the samples not related to the original report, with the sole
exception of a single deviation on REvil’s 2019-Apr-10.

Fig. 6: Results for Validation with Cerber



(a) Additional TTPs on REvil Samples (TTP also valid for Cerber) (b) Additional TTPs on Cerber Samples

Fig. 7: Results for Validation of Additional TTPs with REvil and Cerber Samples

(b) Correctness: We validate the additional TTPs for cor-
rectness and we give some example analysis on Figure 7
and Figure 8. By asserting that the additional TTPs automati-
cally generated are sound, we guarantee an improvement over
existing manual reports.

As seen on Figure 5, the report automatically generated
from the sample 2020-Mar-23 gives two additional TTPs,
both of which are also encountered on other samples of the
same family. In this specific case, these were alerts about
C&C traffic concealed in SSLv3 communication (T1573),
followed by alerts of application layer protocols used while
communicating with known malicious IPs (T1071). Figure 8
shows both cases in more detail.

Figure 7a shows an excerpt of the chain from the sample
2020-Mar-24. The representation on the left side summarises
the automated analysis given as output during the report
creation. In this graph, pseudo-hosts represent Multicast and
Broadcast to simplify the visualisation.

The report generated for 2020-Mar-24 had the additional
TTPs T1048 (Exfiltration Over Alternative Protocol) and
T0885 (Commonly Used Port) mapped from an alert with
Type Breach on a Private IP with a Public IP in an attempt to
exfiltrate data, between the host 192.168.1.4 with an external
IP 83.133.245.36, also verified to be correct. The TTPs T1048
and T0885 are associated with the highlighted alert. In this
case, a communication between 192.168.1.4 and an external
compromised host 83.133.245.361 was detected2.

1https://otx.alienvault.com/indicator/ip/83.133.245.36
2https://www.joesandbox.com/analysis/803486#iocs

Figure 7a also shows informational alerts from the extended
chain with communications with the external IPs 8.8.8.8
and 51.145.123.29. Respectively, a known DNS server and
a known Time server. These events did not contain unusual
information.

For Cerber, there were comparable cases. The automatically
generated report for the sample 2016-Oct-04 has additional
TTPs similar to the ones in Figure 7a, yielding T0885 and
T1048. Seven other samples had these same TTPs.

The report for the sample 2021-Jun-25 had the same TTPs
as other samples before, but it included T1570 and T0867
as additional ones. Figure 7b summarises the analysis in the
highlighted communication. These TTPs are the result of alerts
related to many communications where the host 192.168.1.4
tries to delete or replace files on host 192.168.1.5. In one of
such example, it tried to delete the BAT file ScriptB.bat in the
desktop folder of the destination host through a user UsuarioA.
This is actually the example shown previously in Figure 3 in
the highlighted communication.

An interesting information noticed in these validations is
that the automatically generated reports that include the TTP
T1498 (Network Denial of Service) match the addition of
Distributed Denial of Service (DDoS)3 capabilities to Cerber
in 2016 [38].

From this validation, we conclude that additional TTPs on
all the samples for these malware families achieve correctness.

3https://www.trendmicro.com/vinfo/pl/security/news/cybercrime-and-
digital-threats/cryptxxx-and-cerber-ransomware-get-major-updates

Fig. 8: REvil using insecure encryption, and communicating with blacklisted IPs



TABLE I: TTPs on the CTI Reports created for each family

Family Set Samples(#) Size(B) Alerts(#) TTPs

Bart UN 1 3GB 9 T0814, T1498, T0869, T1071
Cerber UN 15 33GB 19046 T1498, T0885, T1048, T0867, T1570
Crylock UN 1 578MB 9 T0881, T1071, T0869
Crysis UN 12 12GB 110 T0881, T1498
Cryptomix UN 4 16GB 20 T1071, T1573, T1570, T0869, T0885
DmaLocker UN 1 821MB 9 T0885, T1048, T0869, T1071
Gafgyt BDA 123 624MB 712 T0859, T1078, T0840, T1595, T1046
Hajime BDA 1047 225MB 517 T0814, T0840, T1595, T0869, T0885
IRCbot BDA 6 28MB 55 T1595, T1078, T1048
Locky UN 10 42GB 761 T0886, T0867, T1570, T1573
Maktub UN 1 347MB 30 T0867, T1570, T0885, T1048
Mirai BDA 1884 6.6GB 1863 T0840, T0869, T0859, T0814, T0866
Revil UN 6 14GB 4696 T0869, T0885, T1572, T1071, T1048
Tsunami BDA 10 1.8MB 8 T0869, T0885
Wannacry UN 4 19GB 1384 T1210, T0869, T1071, T0885

Others UN 1 - 04-10 T0885, T1048

2) New CTI Reports.: We then ran the solution on the
remaining families, adding the IoT-BDA dataset in these tests.
The results can be seen on Table I.

In some cases with families with a single sample, the NIDS
detected only TTPs related to the simulation process itself,
which are linked to the way the ransomware samples were
created by the original authors [38]. This was expected, as we
explained on Subsection V-A. This includes the families Aleta,
Bitpaymer, Crylock, Crypmix, Cryptfile2, and a few others.
Thus, these families only had two TTPs which are specific
to their simulation rather than to the families themselves,
and between four and ten alerts. They are summarised as the
“Others” group in the last line of Table I.

For the other cases, we detected multiple TTPs. In known
families such as Cerber, we can confirm they include expected
TTPs. The same is valid for REvil as we have seen before. For
the other families, we consider detecting any network related
TTPs as an improvement, as they did not have any in previous
reports.

VI. CONTRIBUTION IN THE GAP ANALYSIS

The following was necessary to provide automated gen-
eration of machine-readable CTI about incidents involving
multiple entities: (1) Work with network alerts from different
hosts. Then, (2) map alerts correlated by a NIDS to relevant
attack methods (TTPs). (3) Output a machine-readable CTI
report that is shareable, and possibly a human-readable one.
(4) Allow the validation of the reports if necessary.

Table II presents the requirements fulfilled by the most
relevant works from Section II. Scarabeo et al. [26], Navarro
et al. [27] and Leite et al. [11] map some CTI with alerts. None
of these generate reports from the information used, as they
focus only on local analysis. Landauer et al. [28] do generate
CTI reports, but only for host-based information.

Based on this analysis and with our results, we assert that
our work fills this gap. It can automatically generate shareable
CTI reports from network incidents about multiple hosts.

Multihost TTP Generate ValidationAlerts Map CTI
Scarabeo et al. [26] ✓ ✓ - -
Navarro et al. [27] ✓ ✓ - -
Leite et al. [11] ✓ ✓ - -
Landauer et al. [28] - ✓ ✓ ✓
Our Solution ✓ ✓ ✓ ✓

TABLE II: Contribution on Gap Analysis

VII. CONCLUSIONS

In this paper, we proposed a new approach to automatically
generate CTI from network incidents by extracting alert chains
from the network, mapping them to TTPs, and exporting them
as CTI, thus addressing sub-question SQ1.

In the validation experiment, we confirmed that the auto-
mated reports match and surpass previously available ones cre-
ated manually. We then validated the correctness of additional
CTI generated, showing that analysts can then verify reports
and prioritise information that might be more useful when
needed. Everything was done with the proposed structure,
fulfilling SQ2 and answering our main research question RQ
by consequence.

For future work, we propose addressing some limitations.
Focusing on being compatible with multiple correlation tech-
niques makes it so that False Positive/Negative Rates are
directly related to the capabilities of the NIDS. Although it
would require analysing and comparing different techniques,
exploring a more self-contained (and thus closed) approach
that includes a fixed correlation technique could benefit the
precision of the output CTI. The methodology also depends



on a good map between alerts and TTPs. Creating these maps
was one of the most demanding (and thus costly) tasks. It
requires specialised knowledge, time for iterations, and pos-
sibly multiple knowledgeable analysts. It could be interesting
to include mapping of TTPs with event types (description)
in common databases, such as ICS-CERT and NVD through
community efforts. This information, likely already known by
creators of alert types, would benefit any analyst using it.
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