Leveraging Semantics for Actionable Intrusion
Detection in Building Automation Systems

Davide Fauri!, Michail Kapsalakis?, Daniel Ricardo dos Santos', Elisa
Costante?, Jerry den Hartog!, and Sandro Etalle!+?

'Eindhoven University of Technology*, *SecurityMatters

Abstract. In smart buildings, physical components (e.g., controllers,
sensors, and actuators) are interconnected and communicate with each
other using network protocols such as BACnet. Many smart building
networks are now connected to the Internet, enabling attackers to exploit
vulnerabilities in critical buildings. Network monitoring is crucial to detect
such attacks and allow building operators to react accordingly. In this
paper, we propose an intrusion detection system for building automation
networks that detects known and unknown attacks, as well as anomalous
behavior. It does so by leveraging protocol knowledge and specific BACnet
semantics: by using this information, the alerts raised by our system are
meaningful and actionable. To validate our approach, we use a real-world
dataset coming from the building network of a Dutch university, as well
as a simulated dataset generated in our lab facilities.

1 Introduction

Building Automation Systems (BAS) are control systems that manage core
physical components of buildings such as elevators, heating and ventilation,
access control, and video surveillance [4/12]. Besides residential and commercial
buildings, BAS also control critical facilities such as hospitals, airports, and data
centers. Within a BAS, devices communicate with each other using network
protocols such as BACnet, KNX, and Zigbee [§].

With the introduction of the Internet of Things (IoT), BAS may even be
connected to the Internet. Hence, attackers can exploit vulnerabilities of protocols
and devices to launch attacks on a building, which can lead to economic loss or
harm building occupants [9T5]. Attacks on smart buildings can, e.g., cause black-
outs by damaging power systems, grant access to restricted areas by tampering
with physical access control, or damage data centers by stopping air conditioning.
Reported attacksﬂ include the 2016 attack that turned off the heating systems in
two buildings in Finland and the 2017 attack that locked hotel guests in their
rooms in Austria.

* Partially funded by EU-H2020-CITADEL (nr 700665), ITEA3-APPSTACLE (nr
15017), NWO-IDEA-ICS and NWO-SotJ (nr 628.013.001).

! See, e.g., https://securityledger.com/2016/11/lets-get-cyberphysical-ddos-
attack-halts-heating-in-finland/ and https://www.nytimes.com/2017/01/30/
world/europe/hotel-austria-bitcoin-ransom.html

https://securityledger.com/2016/11/lets-get-cyberphysical-ddos-attack-halts-heating-in-finland/
https://securityledger.com/2016/11/lets-get-cyberphysical-ddos-attack-halts-heating-in-finland/
https://www.nytimes.com/2017/01/30/world/europe/hotel-austria-bitcoin-ransom.html
https://www.nytimes.com/2017/01/30/world/europe/hotel-austria-bitcoin-ransom.html

Intrusion Detection Systems (IDS) can monitor network activity to detect
attacks. IDS are typically categorized into knowledge-based (when detection rules
are specified from attack signatures; also known as misuse-based) and behavior-
based (when the IDS relies on a model of legitimate behavior). Behavior-based
approaches, in turn, are subdivided in anomaly-based (when a model of legitimate
behavior is learned) and specification-based (when the model is specified) [6].
Applying knowledge-based approaches to BAS is challenging because attack signa-
tures may be device-dependent, which limits their scope and makes them hard to
obtain. Anomaly-based approaches [TTJI7I21] tend to adopt “black-box” machine
learning techniques (e.g., artificial neural networks), which do not provide mean-
ingful information to help understand the cause of an anomaly [19] (e.g., whether
the anomaly is the result of an attack, or an irregular yet legitimate change).
Specification-based approaches are based on vendor-provided documents [2l/5],
which is problematic when the documents are not available or not easily parsable.

Smart buildings are different from IT systems and even Industrial Control
Systems. On one hand, they are dynamic environments where network traffic is a
combination of multiple streams belonging to different categories—e.g., periodic
time-driven patterns or unstructured human-driven activity [24)]—which requires
the use of fine-tuned anomaly-based detection that can raise meaningful alerts. On
the other hand, the kind of devices hosted by BAS are relatively well-standardized
and their protocols are expressive [2], allowing us to more easily derive knowledge-
based detection rules. To achieve interpretable and actionable alerts, we leverage
BACnet’s rich protocol semantics and a semantics-aware detection model.

In this paper, we propose an IDS to monitor building automation networks
based on one of the most widely used protocols for BAS; BACnet. The proposed
IDS uses knowledge about the semantics of BACnet and the BAS to improve
both white-box anomaly detection [3] techniques (for unknown threats), and
knowledge-based techniques (for known attacks). To the best of our knowledge,
the use of protocol semantics for securing building automation networks has never
been proposed. Our approach has two important benefits when compared to
related work. First, the white-box intrusion detection approach learns models that
are understandable by users, and provides semantically rich alerts that clearly
indicate the reasons of an anomaly. The alerts are thus easier to interpret for
network operators, which improves actionability [7]. Second, our approach does
not depend on vendor-specific descriptions of each device. Instead, we exploit the
structure imposed by the BACnet standard to elevate the knowledge-based part
from signatures to more general knowledge about attack patterns. Note that,
although we focus on BACnet, similar methods and techniques may be used for
other building automation protocols, provided that they are as expressive as
BACnet.

The rest of this paper is organized as follows. Section [2| provides background
on the BACnet protocol and attacks in this scenario. Section [3] details our
combined IDS approach. Sections [4] and [5] respectively, discuss implementation
and experiments using a real dataset from the network of a Dutch university, and
a simulated dataset generated in our lab facilities. Section [6] concludes the paper.

2 Background

BACnet [1] is one of the most widely used protocols for building automation. It
is based on four layers: Physical, Data Link, Network, and Application. There
are several BACnet variants. The Network and Application layers are the same
for all variants, but there are seven possible combinations of Physical and Data
Link layers, which are chosen according to requirements such as cost and speed.

A BACnet subnetwork is a connection of devices with the same Physical
and Data Link layers that can directly exchange unicast, multicast or broadcast
messages. A BACnet network consists of multiple subnetworks connected by
BACnet Broadcast Management Devices used to broadcast messages from one
subnetwork to another. If the interconnected subnetworks use different Physical
and Data Link layers, they must also be connected by a BACnet Router.

BACnet defines a standard set of Objects, each with a standard set of Properties
that together describe a device and its current status. Services are used by one
BACnet device to obtain information from another device or command another
device to perform an action. Each service request and service acknowledgment
transmits properties of objects using a message packet sent over the network.

Every BACnet device must have a Device object, whose properties describe
the device to the network. The choice of which other objects, properties, and ser-
vices are present in a device is determined by its function and capabilities (e.g., an
AnalogInput object is used to represent an analog sensor input). Some properties,
such as Description and DeviceType, are set during installation; others, such
as PresentValue, provide status information (e.g., the sensor input represented
by the AnalogInput object). The ReadProperty service is implemented by every
device to inform its properties to another device.

BACnet security. The BACnet standard specifies some security features to
provide, e.g., data confidentiality and integrity, but their implementation is
optional. This means that, in most smart buildings, BACnet data is exchanged
without any kind of authentication, and BACnet devices are programmed to
process every received message, opening them to exploitation by internal and
external attackers [23]. There are several examples of attacks on BACnet devices
and networks in the literature (see, e.g., [QI3II7]). We classify these attacks in
the following four categories:

Network Reconnaissance (or Snooping) aims at gaining knowledge of net-
work topology and information about objects, properties, and services. This
knowledge can be used to plan the next actions of an attack or to organize a
break-in by determining if people are present in the building (see, e.g., [14]).
Device Writing Access (or Tampering) can be used to isolate devices,
compromise them to operate abnormally, or remotely control devices such as
doors and elevators.

Traffic Redirection (or Spoofing) impersonates a device or a BACnet Router
so that messages intended for a certain device never reach their destination.

Denial of Service (DoS) disables the communication between devices or
makes a whole subnetwork unavailable. DoS attacks can isolate critical systems
of a building, such as fire detectors.

Related work. Pan et al. [I7] use a rule learner to detect abnormal BACnet
traffic and to classify it according to attack types. They also propose an action
handler to discard malicious packets. Johnstone et al. [II] used an Artificial
Neural Network to detect specific timing attacks, e.g., values that are changed
in quick succession, in BACnet. Tonejc et al. [21] introduced a framework that
allows the characterization of BACnet network traffic using unsupervised machine
learning algorithms, such as clustering, random forests, one-class support vector
machines and support vector classifiers, after a pre-processing step that includes
principal components analysis for dimensionality reduction. They consider packet
headers, which reflect the network structure, but not the actual application data.

A major disadvantage of the machine learning methods above is that they are
“black-box” models, in the sense that they are hard to understand and modify and
their alerts have a wide semantic gap, i.e. they do not provide enough semantic
information to help understand the cause of an anomaly and to fix it [19].

Zheng and Reddy [24] observe that BACnet traffic is a combination of multi-
ple flow-service streams that belong to “THE-driven” categories: Time-driven,
Human-driven, and Event-driven. The authors then developed different intrusion
detection systems based on traffic classification and different anomaly-detection
models: interarrival-based for time-driven traffic, safe range-based for human-
driven traffic, and volume-based for event-driven traffic. The authors do not
consider knowledge or specification-based detection in their system.

Caselli et al. [2] presented a specification-based BACnet IDS. In their imple-
mentation, when model names and vendor IDs are discovered, the system looks
for documentation related to each device in the Internet. From these documents
(e.g., PICSs) and system configuration files, the IDS automatically generates
detection rules, e.g., permissible services, objects, and properties of each device.
The IDS then monitors the network with the extracted rules, raising an alert
when a packet violates any of them. Their approach suffers the already mentioned
disadvantages of depending on the availability and readability of specification
documents. More specifically, it requires documents to have a specific format
and unambiguous notation. To overcome these limitations, the approach of [5]
generalizes the interpretation of different PICS formats using network traffic to
solve the incompleteness and ambiguity problems.

Some works aim to not only detect but also prevent attacks in BACnet.
Examples include firewalls [I0] and intrusion prevent systems [13] that drop
non-conforming packets, as well as traffic normalizers [20] that actively modify
malicious BACnet traffic. All such tools can have serious consequences in building
automation networks when dropping or modifying legal messages, thus delaying
or ignoring critical actions. Another disadvantage is that they are unable to
detect or prevent unknown attacks.

3. Semantics-based
intrusion detection

White-box
model

Message
Fields

Anomaly-based
detectors

f

Captured
Network
Traffic

BACnet Parser —>| Learning >

L
. . 2. Learning Live
1. Pre-processing Network Alert
Traffic ¥

BACnet . Attack Knowledge-
Threat Patterns based detector
Intelligence| -
Expert

Fig. 1: Overview of our proposed solution

3 Intrusion detection

Figure[I|shows an overview of the IDS divided in three phases. The Pre-processing
phase analyzes two sources of knowledge. The first is the BAS Network Traffic
capture, which is processed by a BACnet Parser to extract the relevant Message
Fields from each message. The second is a collection of BACnet Threat Intelligence
resources, which are interpreted by a human domain Fzpert and manually refined
into Attack Patterns.

In the Learning phase, a white-box model of legitimate (normal) behavior is
learned from the parsed Message Fields.

The Intrusion detection phase is divided in two modules, one for Knowledge-
based and one for Anomaly-based detection. Both modules continuously take
Message Fields as input and can raise alerts for malicious behavior detected in the
network, but they are complementary. The knowledge-based module compares a
black-list of well-known Attack Patterns with the activity in the network traffic:
the false positives rate is usually very low, but the obvious shortcoming is that
unknown attacks are not detected. The anomaly-based module detects previously
unseen attacks: it raises an alert whenever a device sends an anomalous number
of messages, or when the content of the observed messages is abnormal.

The modular system described above supports different detection approaches,
where modules are knowledge-based or anomaly-based detectors that are executed
in parallel. Below, we describe the concrete detectors used in our implementation:
the anomaly-based detection engine is composed by two detectors that are
triggered by messages, or time passing; while the knowledge-based detection
engine is composed by a detector triggered by messages.

3.1 Semantics-based anomaly detectors

Value range. BACnet objects assuming different values, such as an AnalogInput
representing temperature, will have their values stay within a bounded range
during normal behavior. Tampering attacks can be detected, and an alert raised,
when an attacker tries to change the PresentValue property of an object to
a value outside this range. To detect them, during a learning phase we build

a white-list consisting of ranges of normal values for every such object. We
do so by considering all the services that transmit values (e.g. ReadProperty,
WritePropertyMultiple, etc.) and noting the minimum and maximum observed
values. For instance, if during the learning phase we observe ReadProperty
messages that contain the values 2 and 5 for the PresentValue property of
an Analog Input object; and later we observe WriteProperty messages that
contain the values 4 and 6 for the same property of the same object; then the
observed normal range for that property is [2,6].

To reduce false positives in the detection, we widen the range by a certain
tolerance t: in the example above, t = 5% would expand the normal range
to [1.9, 6.3]. The BACnet protocol specification distinguishes between Output
objects, usually sensor measurements, and Input objects, usually setpoints sent
to actuators. This semantic distinction allows us to set two values for ¢: a stricter
tolerance for setpoints, which have typically a low variance, and a more lenient one
for noisy sensor readings. The tolerance value may also depend on the criticality
of the object being monitored: for instance, a temperature setpoint of a server
room should have a strict tolerance, while a hot water setpoint in a house could
be much more lenient.

Number of messages. During normal behavior, we expect the frequency of
messages having similar sources and types to fall within a normal range of values.
If a device is compromised or an attack occurs (e.g. reconnaissance, denial of
service), it may lead to an abnormal number of messages sent for a specific
service. We thus raise an alert whenever we observe an anomalous frequency of
messages sent for a service (either in general or by a specific device). We focus
on computing the frequency per-service instead of per-device because due to how
messages are propagated among BACnet subnetworks, knowledge of the initiated
service is crucial in diagnosing the reason of excessive traffic [16].

To learn this normal frequency feature, we first divide the learning period
L ={Iy,...,I,} in a sequence of consecutive time intervals I = [¢,t+T") with equal
duration T'. For each time interval, we gather a sample set O consisting of all the
messages observed over that interval. We then define, for each given source device
s and service k, a feature that counts the total number of messages sent by s
that refer to k in an interval: f(I) = #{m € O | m.source = s Am.service = k}.
We similarly compute the average count of messages referring to the service k,
normalized on the number of devices that have ever been observed initiating
that service: g(I) = #{m € O | m.service = k}/#{s € D | s is active for k},
where D is the set of all monitored network devices, and a device s is active for
a service k if we observed s initiating k at least once during the learning period.

In learning an interval NV of normal values for the feature f (equivalently for
g), we apply a metric over the set F' of features computed over all time intervals,
F={f(lo),..., f(In)}. We considered three possible choices of metric: min-max,
distance from mean, or deviation from median. We already used the min-max
metric above; the interval runs from the minimum to the maximum value seen in
F, extended with a tolerance t; i.e. NV = [(1 —t) -mingep f, (1 +t) - maxser f].
Similarly, the distance from mean starts from the mean frequency ps and is

extended to NV = [(1 —t) - y, (1 +¢) - uy]. Deviation from median m; uses
a tolerance based on Median Absolute Deviation (MAD) rather than a fixed
percentage: NV = [(1 —c¢- MAD) - my,(1 + ¢- MAD) - my], where MAD =
medianser(|f —my|) and c is a constant (called cutoff) given by the user.

In the detection phase, messages are filtered by source s and service k, and
are sampled with time intervals of the same length T as above. The feature f
is calculated over each of these intervals as they come. An alert is raised if the
observed number of messages is outside the learned normal range for f and g.
When s is a new device on the network, a normal range of values is not available
as it has not been learned yet. Instead, we compare the value of the feature f with
only the normal range for the average service frequency, that is g. Because our
method tries to detect anomalies that can harm the system, we concentrate on
message frequencies that are more than the upper bound of NV; as a consequence,
devices that send less messages than the lower bound will not trigger any alert.

3.2 Knowledge-based detector

This detector uses a black-list of known attack patterns expressed in terms of
the BACnet and BAS semantics. An expert can specify stateless detection rules,
checking for known malicious values in a combination of one or more message
fields. For example, a rule may raise an alert if the source address of observed
messages is set to a broadcast address, either in the IP layer or in the BACnet
Network Layer, as this is indicative of a DoS attack. We also consider stateful
rules; for example, observed messages having the same BACnetAddress but
different DeviceID are indicative of device spoofing; similarly, network number
spoofing may be detected by looking for different NetworkNumbers for the same
Router. In this case, the state comprises the pairs (BACnetAddress,DeviceID)
and (Router,NetworkNumber) observed so far.

4 Implementation

We implemented the intrusion detection modules on top of SilentDefenseEl, an IDS
for industrial control systems developed by SecurityMatters. We used Wireshark’s
BAChnet dissectorEI to represent BACnet packets in a readable format and devel-
oped a custom parser using binpac [I8]. The parser provides the extracted fields
to the Deep Protocol Behavior Inspection engine of SilentDefense, which allows
a security operator to see all BACnet message details. The intrusion detection
scripts were implemented in Lua.

Figure 2| shows an example alert raised by the IDS when a device does not
conform to its normal behavior for service ReadPropertyMultiple. Notice how
this alert is informative and enables a security operator to quickly assess the
situation. In case the operator realizes this is a false positive, the upper limit in
the valid range can be easily changed to an appropriate value (i.e. there is no
need to learn the model again).

2 https://www.secmatters.com/product
3 https://wiki.wireshark.org/Protocols/bacnet

https://www.secmatters.com/product
https://wiki.wireshark.org/Protocols/bacnet

Device does not conform to device and service normal number of messages for service
ReadPropertyMultiple. Details:

BACnet device 100 sent 3643 messages during a 30 minutes interval.
Normal number of messages for this device for this service: [0, 703].

Normal number of messages for this service: [3593, 3641].

Fig.2: Example alert

BACnet testbed. To run attacks and test our intrusion detection approach,
we developed a testbed modeling a lighting and temperature control system in a
small building, and containing the following real devices:

— two sensors (motion & temperature) and two actuators (fan & LED bulb);

— one digital I/O and two analog I/O devices connected via serial cable to the
sensors and actuators, and communicating via BACnet MS/TP;

— a BACnet Router that connects one MS/TP network with one IP network;

— a BACnet/IP Controller that implements the logic of the system by reading
and writing inputs and outputs of the I/O modules;

— a BACnet/IP Workstation used to configure devices in the network;

— a BACnet/IP Workstation that monitors the testbed and lets users modify
setpoints;

— a Raspberry Pi used to run attacking scripts from the IP network.

The testbed implements two automated functions. First, when the motion sensor
state goes from 0 to 1, the controller sends a command to the I/O module to
switch on the LED by changing the state of one of its outputs. Second, the I/O
module continuously reads the temperature values sent by the sensor and informs
the controller. The controller activates the fan when the sensed value is greater
than a setpoint set by the operator.

Attacks. We implemented the following synthetic attacks in Python, using
the bacpypesﬂ library to exchange BACnet messages between the Raspberry Pi
and the rest of the testbed network. All the attacks are successful, because the
BACnet devices in the testbed do not implement any authorization check and
accept all the messages that come from any device. This is typical for building
automation systems [23].

Snooping. We broadcast Who-Is messages to retrieve the address and instance
number of all devices in the network, and then send ReadProperty services to
these devices to read their model name, vendor ID, and the objects and services
supported by them.

Tamperingl. We send a WriteProperty request to the digital I/O controller
and toggle the state of the LED bulb or of the cooler fan. In this attack, we send
a single message to change the state of an output only once.

Tampering2. We send a ReadProperty request to the main controller to extract
the current (analog) temperature setpoint value; we then send a WriteProperty

* https://github.com/JoelBender/bacpypes

https://github.com/JoelBender/bacpypes

request to the same controller to increase this value by five degrees. As a result,
the fan stops working and the temperature increases in the room.

Spoofing1. We listen to BACnet messages until receiving an I-Am unconfirmed
request with device instance number equal to that of the digital I/O controller.
We then immediately send a new I-Am message with the same details, except for
a malicious IP address. As a result, the connection between the other BACnet
devices in the network and the legitimate device is broken and the attacker is
able to read and change their contents.

Spoofing2. Similar to the previous attack, but in this case we impersonate a
BACnet Router by sending fake I-Am-Router-To-Network messages including
the network number of another legitimate BACnet Router. The goal of this
attack is twofold: i) traffic redirection, since all BACnet/IP devices that want
to communicate with non-BACnet/IP devices nested behind this router send
messages to the attacker machine; ii) denial of service, since the nested devices
cannot receive messages from BACnet/IP devices. However, BACnet/IP devices
reconfigure their routing tables when a nested device sends any kind of message,
because the network number is included in BACnet Network Layer and the
message is sent by the legitimate BACnet Router.

Reflected DDoS. We broadcast 1000 Who-Is requests in a few seconds, without
a device range. As a result, a total of 6000 I-Am messages are broadcasted by the
6 BACnet devices in the testbed. The BACnet Router is overloaded and starts
rejecting all the messages that it receives: as a result, the BACnet/IP devices
cannot communicate with BACnet MS/TP devices.

5 Experiments

The goal of the experiments was to validate the attack detection capabilities
of our IDS, and to measure how many false positive alerts (FP) it raised on
legitimate traffic. To achieve those goals, we used a real and a synthetic dataset.
We split each of them into 70% for learning the white-box model, and 30%
for validating the false alerts. We considered these datasets to be attack-free:
therefore, we regarded any alert raised from the validation data as a false alert.
Dataset 1 comes from a real BACnet network of a Dutch University. We analyzed
nine days of traffic, totalling 106 GB of data and 20 million BACnet messages.
We could not use the infrastructure of the university to perform attacks, but
Dataset 1 helped us to evaluate the number of false alerts that our IDS might
raise when deployed in a real scenario. We extracted two partial datasets from
Dataset 1 to examine whether the duration of the learning period affected the
accuracy of our IDS. The first partial dataset (D1.1) includes approximately 4
days of network traffic, split in 50 hours of training and 47 hours of testing. The
second partial dataset (D1.2) includes the whole 9 days of traffic, split in 172
hours of training and the same 47 hours of testing as in D1.1.

Dataset 2 comes from our BACnet testbed presented in Section [4] We captured
10 minutes of traffic with no attacks: due to the small size of our testbed, this
short time span is still sufficiently representative of the normal behavior on the

network. After measuring the number of false alerts from the validation data, we
then re-used the same white-box model learned from the training data to test the
detection capabilities of our IDS. To do so, we launched the attacks described in
Section [4 and evaluated if the IDS raised a corresponding alert.

Results. Our IDS managed to raise alerts for 5 out of 6 attacks: all of the
Snooping, Spoofing and Reflected DDoS attacks were detected by either the
number of messages anomaly detector, or the knowledge-based detector. Among
the Tampering set of attacks, the IDS could only detect the Tampering2 attack,
through the value range anomaly detector; the other attack took place unnoticed.
This is not surprising: the Tampering! attack was expected to be undetectable
by our approach, as it is just an isolated command that simply toggles the binary
value of a switch from on to off. During the learning phase we observed both of
these values, which were then included in the range of normal data. From the
point of view of the IDS, the attack was thus indistinguishable from the action
of a legitimate user. It is important to note that no single detector could catch
all types of attacks; we conclude that we need a combination of anomaly-based
and behavior-based detectors to detect different kinds of attacks.

To evaluate the usability of our IDS, we followed the work of [22] and computed
both the total number of FP and the average rate of FP per hour which were
raised on our datasets. We limit this analysis on the two semantics-based anomaly
detectors, as we reasonably expect that the specified detection rules used in the
knowledge-based detector are precise enough to not generate many FP.

Table [La) presents the evaluation results for the value range anomaly detector,
with two possible settings for the interval tolerance parameter ¢. The training
interval in D1.1 is clearly too short to learn the full range of behaviour leading to
many false positives. The longer training period in D1.2 which spans a whole week
leads to fewer FP. Buildings are live, dynamical systems with many time-driven
and human-driven regularities [24]: seven days is a manageable period of time
in which we expect to observe the full range of normal values. We still need

Table 1: False positive alerts raised by the anomaly detectors
D1.1 D1.2 D2

Interval | 30m | 60m | 30m | 60m || 30s | 60s
min-max | 204 | 141 | 54 8 1 1

\D1.1\D1.2
i — 5% lo144 | 1531 mean | 1058 | 506 | 1151 | 528
t=20%| 2510 | 3 mediane—; | 676 | 521 | 763 | 563

(a) Value range detector medianc=3 | 505 | 398 | 511 | 444
median.—s | 456 | 379 | 418 | 400

S = k= O
[l .

(b) Number of messages detector

10

to adjust ¢ to balance the tradeoff between detection and FP rate, taking into
account the criticality of the monitored value. Assuming a tolerance of 20% is
acceptable throughout all the monitored buildings in the network, and using the
longer training period (D1.2) results in around 0.06 FP /h.

Table shows the results for the number of messages anomaly detector.
We tested different settings during the learning phase. When computing the
frequency values, we used two different interval durations: 7=30 and 60 minutes
for Dataset 1, and T=30 and 60 seconds for the considerably shorter Dataset 2.
When computing the range of normal values, we used the following metrics and
parameters: min-max with tolerance ¢t = 5%; deviation from the median with
cutoff values ¢ = 1, 3 and 5; and distance from mean with tolerance ¢t = 5%.
The min-max metric provides the least false alerts, since by construction it does
not regard any value from the training data as anomalous. However, outliers
during training could lead to overly large intervals, hindering detection. Mean
and especially median are more robust to outliers during training. The tighter
resulting intervals do cause more FP. We also see that training on both work and
weekend days (D1.2) skews the intervals for measures of central tendency such
as mean and median, leading to slightly more FP. As behaviour differs between
work and weekend days adding profiling [3] would likely improve results.

Furthermore, Table [1b|indicates that both the duration of the intervals and
the size of the dataset can have an effect on the number of false alerts. We observe
that using longer time intervals reduces the number of FP. This reduction happens
because, in both training and detection, we compute the frequency of messages
over a longer time T'. This increases the chance of ‘averaging out’ the effect of
short, possibly anomalous bursts of intense traffic: frequencies computed during
detection will tend to be closer to the learned normal values, unless the bursts
last for a significant portion of the time interval defined by T.The parameter T’
should then be tuned with care to balance FP rate, duration of the attacks that
can be detected, and the timeliness of the raised alerts.

6 Conclusion

We proposed an IDS approach for BACnet networks that leverages the semantic
information provided by the communication protocol. It exploits known attack
patterns and normal network behavior of BACnet devices to detect a significant
number of attacks. Once an attack is detected, the system generates enriched
alerts that include semantic information helpful to the operators.

The IDS provided good results to detect the implemented BACnet attacks,
while raising a satisfactory number of false alerts. The tolerance levels for the
anomaly-based modules depend on the operation and criticality of each building.
In general, we suggest thresholds and cutoffs that are able to balance false
alerts and detection rates. As future work, we intend to test whether other BAS
protocols, such as KNX and ZigBee, offer enough semantics information to allow
for a similarly made IDS.

11

References

1.

2.

o

10.
11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

ASHRAE: BACnet - a data communication protocol for building automation and
control networks. Standard (2016)

Caselli, M., Zambon, E., Amann, J., Sommer, R., Kargl, F.: Specification mining
for intrusion detection in networked control systems. In: Proc. of USENIX Security
(2016)

Costante, E., den Hartog, J., Petkovié¢, M., Etalle, S., Pechenizkiy, M.: A white-box
anomaly-based framework for database leakage detection. JISA 32 (2017)
Domingues, P., Carreira, P., Vieira, R., Kastner, W.: Building automation systems:
Concepts and technology review. Computer Standards & Interfaces 45(Supplement
C) (2016)

. Esquivel-Vargas, H., Caselli, M., Peter, A.: Automatic deployment of specification-

based intrusion detection in the BACnet protocol. In: Proc. of CPS-SPC (2017)
Etalle, S.: From intrusion detection to software design. In: ESORICS (2017)
Fauri, D., dos Santos, D., Costante, E., den Hartog, J., Etalle, S., Tonetta, S.: From
system specification to anomaly detection (and back). In: CPS-SPC (2017)
Hersent, O., Boswarthick, D., Elloumi, O.: The Internet of Things: Key Applications
and Protocols. John Wiley & Sons (2011)

Holmberg, D.: BACnet wide area network security threat assessment. Tech. rep.,
NIST (20013)

Holmberg, D.: Using the BACnet firewall router. ASHRAE Journal 48(11) (2006)
Johnstone, M., Peacock, M., den Hartog, J.: Timing attack detection on BACnet
via a machine learning approach. In: Proc. of AISM (2015)

Kastner, W., Neugschwandtner, G., Soucek, S., Newman, H.M.: Communication
systems for building automation and control. Proceedings of the IEEE 93(6) (2005)
Kaur, J., Tonejc, J., Wendzel, S., Meier, M.: Securing BACnet’s pitfalls. In: Proc.
of IFIP SEC (2015)

Mollers, F.; Sorge, C.: Deducing user presence from inter-message intervals in home
automation systems. In: Proc. of IFIP SEC (2016)

Mundt, T., Wickboldt, P.: Security in building automation systems - a first analysis.
In: Proc. of Cyber Security (2016)

Newman, H.: Broadcasting BACnet®. ASHRAE Journal 52 (2010)

Pan, Z., Hariri, S., Al-Nashif, Y.: Anomaly based intrusion detection for building
automation and control networks. In: Proc. of AICCSA (2014)

Pang, R., Paxson, V., Sommer, R., Peterson, L.: Binpac: A yacc for writing appli-
cation protocol parsers. In: Proc. of IMC (2006)

Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for
network intrusion detection. In: Proc. of IEEE S&P (2010)

Szlésarczyk, S., Wendzel, S., Kaur, J., Schubert, F.: Towards suppressing attacks on
and improving resilience of building automation systems - an approach exemplified
using BACnet. In: GI Sicherheit (2014)

Tonejc, J., Guttes, S., Kobekova, A., Kaur, J.: Machine learning methods for
anomaly detection in BACnet networks. JUCS 22(9) (2016)

Urbina, D., Giraldo, J., Cardenas, A., Tippenhauer, N., Valente, J., Faisal, M.,
Ruths, J., Candell, R., Sandberg, H.: Limiting the impact of stealthy attacks on
industrial control systems. In: Proc. ACM SIGSAC CCS (2016)

Wendzel, S., Tonejc, J., Kaur, J., Kobekova, A.: Cyber Security of Smart Buildings
(2017)

Zheng, Z., Reddy, A.: Safeguarding building automation networks: THE-driven
anomaly detector based on traffic analysis. In: Proc. of ICCCN (2017)

12

	Leveraging Semantics for Actionable Intrusion Detection in Building Automation Systems

