
From System Specification to Anomaly Detection (and back)
Davide Fauri

Eindhoven University of Technology
d.fauri@tue.nl

Daniel Ricardo dos Santos
Eindhoven University of Technology

d.r.dos.santos@tue.nl

Elisa Costante
SecurityMatters

elisa.costante@secmatters.com

Jerry den Hartog
Eindhoven University of Technology

j.d.hartog@tue.nl

Sandro Etalle
SecurityMatters

Eindhoven University of Technology
s.etalle@tue.nl

Stefano Tonetta
Fondazione Bruno Kessler

tonettas@fbk.eu

ABSTRACT
Industrial control systems have stringent safety and security de-
mands. High safety assurance can be obtained by specifying the
system with possible faults and monitoring it to ensure these faults
are properly addressed. Addressing security requires considering
unpredictable attacker behavior. Anomaly detection, with its data
driven approach, can detect simple unusual behavior and system-
based attacks like the propagation of malware; on the other hand,
anomaly detection is less suitable to detect more complex process-
based attacks [26, 35] and it provides little actionability in pres-
ence of an alert. The alternative to anomaly detection is to use
specification-based intrusion detection (see, e.g., [28, 30, 33, 45]),
which is more suitable to detect process-based attacks, but is typi-
cally expensive to set up and less scalable. We propose to combine
a lightweight formal system specification with anomaly detection,
providing data-driven monitoring. The combination is based on
mapping elements of the specification to elements of the network
traffic. This allows extracting locations to monitor and relevant con-
text information from the formal specification, thus semantically
enriching the raised alerts and making them actionable. On the
other hand, it also allows under-specification of data-based proper-
ties in the formal model; some predicates can be left uninterpreted
and the monitoring can be used to learn a model for them. We
demonstrate our methodology on a smart manufacturing use case.

CCS CONCEPTS
• Security andprivacy→ Intrusion detection systems; •Com-
puter systems organization→ Embedded and cyber-physical sys-
tems;

KEYWORDS
Intrusion detection, specification, anomaly detection, industrial
control system

Partially funded by EU H2020 CITADEL (nr 700665), ITEA3 APPSTACLE (nr 15017)
and IDEA-ICS project by NWO.
CPS-SPC’17, November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
CPS-SPC’17, November 3, 2017 , https://doi.org/10.1145/3140241.3140250.

1 INTRODUCTION
Industrial control systems (ICS) drive critical infrastructures and
other cyber-physical processes, such as smart manufacturing. Tra-
ditional safety issues for such systems are further complicated with
new security concerns triggered by increased interconnectivity and
observed attacks, such as Stuxnet, Dragonfly, and BlackEnergy (see,
e.g., [36]). Consider a remotely controlled smart manufacturing
plant. The added connectivity and lower physical supervision yield
additional possibilities for attacks. Thus, in addition to known pos-
sible failures, one must also consider unpredictable behavior, such
as that caused by an attacker.

Cyber attackers can compromise ICS through, e.g., backdoors or
holes in the network perimeter, vulnerabilities in common protocols,
man-in-the-middle attacks, and malware. Industrial control systems
also suffer from a special class of process-based attacks, where the
attacker modifies the status of the system to damage the integrity
of the physical process. Real examples of such attacks include the
rapid opening and closing of a water valve to cause a pipe burst, or
the opening of multiple breakers in a power distribution system to
cause an outage [44].

Process-based attacks are of crucial importance for ICS, as
demonstrated by a large interest from the research community [13,
15, 25, 28, 30, 33, 45, 46]. Detecting these attacks is challenging be-
cause the commands and the parameters used are within the norm
and a stealthy attacker might even tamper with sensor readings;
what causes the damage has to do with a combination of, e.g., the
timing and order of commands and stored measurements.

Many works that try to address this problem rely on the pres-
ence of an accurate specification (computer model) of the actual
physical behavior of the system [13, 45]. By feeding the appropriate
parameters and measurements in the computer model, one can
identify when the physical system actually deviates from the ex-
pected behavior. The disadvantages of specification-based systems
are rooted in its operational costs: obtaining such a complete specifi-
cation (which can involve timing, control logic, dynamical systems,
etc.) may take weeks of work for each system to be monitored and
therefore makes this approach hardly practical of the vast majority
of ICS systems. In addition, specification-based systems (by def-
inition) do not scale well to cover large scale systems and cope
with difficulty with system changes, while practical experience
suggests that, even in industrial control systems, system changes
are frequent [20].

The alternative to a (physical) specification-based approach is to
use a learning-based approach. The idea is to (a) sniff the network

https://doi.org/10.1145/3140241.3140250

traffic of the system, (b) identify the variables (parameters) in it,
(c) extract features and make a model of (learn) their “normal” be-
havior and finally (d) compare the behavior of the running system
with the one prescribed by the model. Monitoring the network for
anomalies using a semantics and context-aware approach can be
applied with great success in ICS systems [51], offering the ability
to detect attacks/unwanted deviations with low cost (false posi-
tives). To achieve this, one needs to know what to monitor and
what forms relevant context information. Two disadvantages of
anomaly detection systems are: (a) they detect only the simpler
process-based attacks and (b) they lack actionability [20], in the
sense that alerts typically give very little information to act upon;
this is due to the semantic gap between alerts and their opera-
tional interpretation [41]. An alert is considered actionable when
it is meaningful to a security operator, who can take appropriate
measures based on the information presented.

In this paper, we propose to combine formal specification with
learning as a new methodology to overcome the semantic gap be-
tween network anomalies and actionable alerts, without incurring
in the high costs of a full-fledged specification-based system.

We do so by leveraging a lightweight logical system specifica-
tion. With our methodology, system specification is simplified by
allowing the use of uninterpreted predicates that, instead of being
fully specified, are learned through network monitoring. The use
of such predicates alleviates the burden on the operator who has to
provide the specification. Detected anomalies are evaluated by an
operator: false positives lead to an update of the detection model,
whereas true positives lead to an updated specification.

The crux of the approach is a mapping between elements of
the formal specification (logical variables and events) and network
traffic fields. This is done manually by the operator using his/her
background domain knowledge and the help of automatic classifi-
cation and visualization techniques. A simple example is a packet
sniffed from a Modbus communication channel that reads value 30
from register r1. The network traffic alone does not provide any
meaning to the number 30. It may be that 30 is an anomalous value
that was rarely or never seen in r1 during the training of the model
and therefore an alert will be raised. But if the operator does not
know what this value means, there is little that he/she can do to
identify it as a real attack or to fix the problem. On the other hand,
if register r1 is mapped to process variable temperature—defined in
the system specification—then the operator can decide if the alert
is a true or false positive and act on it. In fact, the operator can use
true alerts to update the specification of the system with a range of
normal temperatures for the system.

Besides providing actionable alerts, such a lightweight specifi-
cation can also enhance the selection of features to be monitored.
In a real ICS there may be thousands of variables involved in the
process. Selecting which of those to monitor is a daunting task.
The specification can be used in this scenario in three ways: (i) the
user may select to monitor only the variables that are defined in
the specification; (ii) the user may choose to monitor all possible
variables, in which case only those defined in the specification will
provide actionable alerts; or (iii) the user may choose to monitor
only the variables defined in the specification together with other
correlated variables. We leave the last option for future work and
explore the first two in this paper.

Company’s
headquarters

M2RTU

liquid level

Liquid Filling
station 1

Liquid Filling
station 2

Mixer
station

Quality Check
station

valve 1 valve 2

Physical Process (PP)

 Remote Factory

RTU2PLC

sensor 1 sensor 2 sensor 3 sensor 4

sensor 5

PLC2PP

PLC	

Figure 1: Smart manufacturing use case

In this way, system specification and anomaly detection
strengthen each other; system specification is simplified and can be
used to synthesize modelling setting (locations, features, context)
for the anomaly detection. To the best of our knowledge, this is the
first attempt to integrate formal system specification and anomaly
detection. Related work (e.g., run-time verification [21] and pol-
icy monitoring [4, 5]) may use similar specification languages, but
does not consider data-driven anomaly detection and interpret all
first-order symbols on the system execution.

The rest of this paper is organized as follows. In Section 2, we
present a motivating scenario that is used throughout the paper.
In Section 3, we give an overview of our approach, sketching the
specification and monitoring framework. In Section 4, we describe
the proposed method for combining the formal specification and
anomaly detection in more details. In Section 5, we present the
implementation and an initial experimental evaluation of our ap-
proach. In Section 6, we discuss related work. Finally, in Section 7,
we provide some conclusions and ideas for future work.

2 MOTIVATING SCENARIO
To illustrate our approach, we use a remotely controlled medicine
bottle filling plant, as shown in Figure 1. Bottles on a belt encounter
two liquid filling stations, a mixer, and a quality check. Each station
has a sensor to detect the presence of the bottle. The filling stations
also have actuators to open and close the filling tube valves. At the
quality check, the volume of liquid is measured with an ultrasonic
sensor. The process is remotely controlled and monitored from the
company headquarters through an internet connection (the M2RTU
communication channel in the Figure) to a Remote Terminal Unit
(RTU) at the plant, which connects (using the RTU2PLC channel)
to a Programmable Logic Controller (PLC) that drives the actuators
and sensors in the physical process (using the PLC2PP channel).

This industrial process comprises the following steps:
(1) The system operator, who is in the headquarters, connects to a
Human Machine Interface (HMI), where a process window displays
a picture of the system and the states of sensors and actuators. The
operator can define the setpoints of the actuators (milliliters for
ingredients and seconds for the mixer) and start or stop the remote
operation. When the operator sends the setpoints to the RTU and
presses the start button, the PLC starts the process.

(2) When a bottle activates a position sensor, the PLC stops the
belt and starts the corresponding actuator (valve or mixer).
(3) When the bottle is at an ingredient position, the PLC opens the
ingredient’s valve and fills the bottle with the quantity defined by
the setpoint.
(4) When the bottle is at the mixer position, the PLC activates the
mixer for as many seconds as defined by the setpoint.
(5) When the bottle is at the quality check position, an ultrasonic
sensor measures the quantity of liquid in the bottle. The mea-
surement is sent to a Supervisory Control and Data Acquisition
(SCADA) system (not shown in Figure 1 for the sake of simplicity),
which decides whether to keep the bottle or not, according to the
setpoints defined by the operator. For instance, if the setpoints
for the two ingredients are 40ml and 50ml, then the acceptable
measurement is 90ml.
(6) The process continues indefinitely. Employees go to the remote
plant every three days to collect all the bottles produced.

The plant uses mainly Modbus/TCP [42] to connect the devices.
In the Modbus network, one device called Master (the RTU in this
example) requests information and the others, called Slaves, supply
it (the PLC in our example). The Master can also write information
to the Slaves. This information is stored in registers and coils, which
have unique addresses per device. The protocol has four object data
types: discrete inputs are 1-bit read-only, coils are 1-bit read-write,
input registers are 16-bit read-only, and holding registers are 16-bit
read-write. Reading, writing, and other operations are indicated by
function codes, e.g., 1 is a “Read coils” operation, 4 is “Read Input
Registers”, 15 is “Write Multiple Coils”, and 16 is “Write Multiple
Holding Registers”. To define the setpoints, for instance, the RTU
sends a network packet to the PLC containing the function code
16, the address of the register supposed to hold this information,
and the value of the setpoint.

Other devices and protocols used in the implementation of this
scenario are described in Section 5.

Attacks. The three days unsupervised time span mentioned
in the last step of the process description gives an attacker the
opportunity to exploit vulnerabilities of the system and to launch
attacks that may disrupt the plant production. An attacker can, for
instance, subvert the process to produce bottles with too much or
too little liquid. This can be implemented as man-in-the-middle
attacks that tamper with the communication between the operator
and the RTU, the RTU and the PLC or the PLC and the physical
process.

An attack aiming to overflow a bottle can be implemented by
learning the setpoints sent by the operator to the RTU, storing them,
and modifying them with new values that overflow the bottles. As
a result, the PLC receives incorrect setpoints and the actuators that
control the valves of the two ingredients stay open for longer than
they are supposed to. The attacker can also modify information sent
by the PLC to the RTU so that the SCADA system receives wrong
process information and the operator is unaware of the attack.

While the quality check sensor may confirm the right amount of
liquid (assuming that its reading is correctly sent to the SCADA sys-
tem), it cannot determine how much of each ingredient is included.
Therefore, another attack may change the ratio of the ingredients,

Figure 2: Overview of the approach. Note that the intervention
of human operators in steps 1 and 3 is mandatory, while in step 2 it
is optional.

since incorrect mixtures could be poisonous. This can be imple-
mented via Modbus similarly to the overflow attack, but switching
the first setpoint with the second one or vice-versa.

Thus, we would like to ensure that Valid amounts of both liquids
are used. In Section 4, we detail how this example is specified and
how we can learn what is a Valid bottle by using our framework.

3 SOLUTION OVERVIEW
Our methodology, shown in Figure 2, is divided in three phases,
described in details below. Notice that throughout this paper, we use
the term ‘process variable’ in different contexts. A process variable
can be a logical variable defined in the system specification or a
specific memory location of a specific process device. The difference
should be clear in the context.

1. Feature selection. The objective of the first phase is to re-
fine the captured “raw” network traffic into a set of semantically
meaningful variables, represented by the selected features. These
variables should be mapped to the events and variables described
in the specification.

To do so, we first parse the captured traffic using a packet dissec-
tor (such as Wireshark1) to extract the process variables contained
in the application layer. We assign to each variable a unique iden-
tifier, consisting of a combination of the IP address of the device
where the variable was observed, the protocol and type of vari-
able (e.g., 16-bit Modbus register) and the memory address that the
variable occupies within the device.

Since industrial network communications are mostly machine-
to-machine, the representation of process variables is usually op-
timized for efficient transmission and storage, rather than under-
standability. As such, variables are associated with only a memory
address or an encoded label instead of a descriptive name that re-
lates to the variable meaning. On the other hand, the provided
specification usually gives only a high-level description of the pro-
cess, not mentioning how each variable is encoded.

1https://www.wireshark.org/

https://www.wireshark.org/

To link the low-level and high-level elements, we ask for the
human intervention of a domain expert. We first automatically clas-
sify the variables into [19]: sensors, which represent measurements
of physical quantities related to the industrial process; counters,
whose values are cyclic counters modulo a maximal value; con-
stants, which always hold the same value; and others, which do not
match any of the three previous categories. Then we plot the val-
ues of the process variables over time, highlighting the significant
changes as potential events, e.g., the flipping of a binary variable or
a sudden change in a real-valued variable. We then let the expert
assign a label to these variables and events, according to the list of
terms contained in the specification. Additionally, the expert can
choose to define a transformation of two or more variables into
a derived variable, capable of expressing new information about
the system state. For example, variables inдr1 and inдr2 can be
combined as total = inдr1 + inдr2 to provide the total volume of
liquid in a bottle. These combinations may or may not be foreseen
in the specification.

In some cases, an under-specified predicate in the specification
might only indicate which variables are involved, but not how to
combine them. For example, the composition of the final product
can be defined as an uninterpreted function of other variables:
composition = f (inдr1, inдr2). Following [51], we define com-
pound variables as tuples of single variables. Then we can ob-
tain compound variables from such uninterpreted functions, e.g.,
(inдr1, inдr2) in the case above.

We thus obtain two intermediate results: a mapping from the
unique identifier to the semantical meaning of each process vari-
able and a set of transformations that combine single variables
into derived and compound ones. Already in this first phase, the
domain expert has the possibility of improving the initial specifi-
cation by using the knowledge gained from the classification and
visualization of the variables. For instance, if the total variable was
not foreseen in the specification, it may be added as a feature at
this point and used by the expert to formulate suitable properties
to add to the specification.

2. Model learning and anomaly detection. During the first
phase, the domain expert performs a more ‘qualitative’ evaluation,
looking at the behavior of variables in general, e.g., the domain
expert did not need to know howmanymilliliters are in a bottle, but
only that the liquid should not spill out. During the learning phase,
we exploit the ‘quantitative’ information contained in the network
traffic to learn a semantically meaningful model of normality based
on the features selected in phase 1.

To do so, we apply the mapping and set of transformations to the
process variables extracted from the network. The resulting vari-
ables can then be processed by the learning module of an anomaly
detection system, which forms the model builder component.

The parameters learned from the data, namely a set of bins and
detection thresholds (more details in Section 3.2), which form the
anomaly detection model, can be reviewed by the domain expert.
This expert can then update the specification according to the
learned parameters (e.g., by adding a constraint saying that the level
of inдr1 should never be lower than a certain threshold, observed
during the learning process), or tune the anomaly detection model
to include rare but valid values.

We note that, in the previous phase, the human intervention was
necessary for inferring a labeling of the process variables. During
the learning phase, instead, the human involvement is optional.
Nevertheless, it helps in adding information about the process that
cannot be reliably learned from the training data. It also helps
in keeping the specification up to date with regard to the actual
process, since they may be at odds.

The result of this phase is a set of detection thresholds against
which the single and derived variables should be compared. This can
be applied to the real-time monitoring of the process. From a live
network capture, we extract and combine the same process variables
as we did from the training dataset, and compare them against
the thresholds. Values that exceed the thresholds are labeled as
anomalous and an alert is raised for each type of anomaly. Since the
cause of an anomaly is given by a specific feature in the model and
the feature can be mapped back to an element of the specification,
the alert is enriched with the information in the specification, e.g.,
the variable name and possible constraints associated to it.

Although not the focus of this paper, parallel to the anomaly
detection there may be a run-time verification component (see,
e.g., [21]) with monitors synthesized directly from the specifica-
tion and the mapping from network to specification elements. The
specification is used in this case to prevent known faults or attacks.
The alerts raised by this component are actionable by default, since
they are generated from the specification, which clearly defines the
context and the variables involved in the alert.

3. Specification learning. In the last phase, the actionable
alerts raised by the anomaly detector can be either true or false
positives. The usual cause of a false positive is the appearance of a
rare but valid value which was not present in the training data nor
in the specification. It is up to the human operator to classify each
alert as a true or false positive. This task is made easier by two facts.
First, since the anomaly detector does not monitor every possible
process variable, but only those features selected with the help
of the system specification, the number of false positives should
decrease so that the user does not have to manually classify an un-
reasonable number of alerts. Second, since the alerts are presented
in a meaningful way, with the attached semantics, it is easier for the
operator to determine whether an alert is a true or a false positive.

Those alerts that are classified as true positives can be used to
refine the specification, by adding new constraints on the process
or giving an interpretation to under-specified predicates. Those
alerts that are classified as false positives can be used to tune the
parameters of the anomaly detection model, such as increasing a
threshold or widening the bins.

With an updated specification, the fault detection mechanism
is capable of generating new monitors from the added properties.
There could also be a reconfiguration component that synthesizes
a safe system configuration from the specification. Such (semi)-
automated reconfiguration of the system to satisfy the updated
specification is one of the research topics of the CITADEL2 project,
where an adaptation plane can trigger the reconfiguration of the
system’s operational plane.

2http://www.citadel-project.org/

http://www.citadel-project.org/

In the remainder of this Section, we present the specification
and anomaly detection framework used throughout this paper.

3.1 Specification framework
System properties language. We derive features from system

properties that are expressed in a formal language. This language
is based on a fragment of First-Order Linear-time Temporal Logic
(LTL) [34], extended with Event Freezing operators to compare
terms at different points of time, and explicit notion of time (see [43]
for a detailed description). The first-order symbols are interpreted
using a background theory (as in, e.g., [22]).

The system is described with a set V of variables (representing
the status of the system), a set E of events (such as open a valve
and send a message), and a first-order signature Σ (e.g., arithmetic
operators and/or user-defined functional symbols). The properties
are built from these sets with the following grammar:

ϕ := p(t , . . . , t) | ϕUϕ | ϕSϕ

t := v | e | f (t , . . . , t) | time | t@next(ϕ) | t@last(ϕ)

where p and f represent, respectively, a predicate and a function
symbol in the signature Σ; v a variable in V ; e an event in E; time
the time; t@next(ϕ) and t@last(ϕ) the value of the term t at the
next and at the last state in which ϕ holds, respectively; U the
LTL temporal operator “until”; and S its past dual operator “since”.
“Always” (G) can be encoded in this as usual (i.e., Gϕ := ¬F¬ϕ,
where Fϕ := trueUϕ). Typical properties are invariants of the form
Gϕ, such as:

G(bottle_ok → Valid(inдr1, inдr2))

The semantics of the properties is defined in terms of the exe-
cution traces of the system. A trace is a sequence s0, e0, s1, e1, . . .
where, for all i ≥ 0, si is an assignment to the variables in V and
ei ∈ E ∪ R+0 such that the sequence series

∑
i,ei ∈R+0

ei is diverging.
The partial sum

∑
i≤j,ei ∈R+0

ei represents the time at the j-th state
of the trace and so the value of the time symbol time .

A property is interpreted over a first-order structure, which as-
signs an interpretation to the signature symbols, and over a trace
that represents the evolution of the system variables and events
(the interpretation of the signature symbols is rigid, i.e. it does not
vary along the trace). Some signature symbols are primitive and
interpreted by the background theory. Other symbols are uninter-
preted and may be used to model abstract concepts. We typically
use infix notation of interpreted symbols and function notation for
uninterpreted ones. So, for example,v1 ∗v2 represents the standard
multiplication between two numbers, while Valid(v1,v2) is unin-
terpreted. For the scope of this paper, we use a question mark to
highlight that a symbol is uninterpreted and write ?Valid(v1,v2).

Fault detection specification. In the design of high-assurance
systems, after the system requirements are specified, safety or secu-
rity engineers identify the possible hazards or vulnerabilities that
may lead to a system failure. Fault-detection, isolation and recov-
ery (FDIR) components are then added to the design to address
them. An FDIR design specifies a diagnosis condition, capturing the
fault that must be detected, and a monitoring condition, giving the
events and variables that must be monitored [6]. In fact, only a
subsetVobs ⊆ V of variables and Eobs ⊆ E of events are observable

and can be used by the monitor to determine when the diagnosis
condition occurred. Therefore, the diagnosis condition should be
diagnosable [39], i.e. enough events/variables of the system must
be observable to detect any occurrence of the diagnosis condition.
See [9, 10] for the formal characterization and [7] for automated
synthesis of these observables.

3.2 Anomaly detection
Anomaly detection learns models of normal behavior to be able to
detect unknown faults or attacks. Subsequent behavior triggers a
comparison with the model and alerts the operator of any devia-
tions. However, effective anomaly detection needs to reason at the
application level in a context-aware manner. White-box monitor-
ing [16, 17] has been successfully applied in the ICS setting [51] and
creates semantical models that are context-aware. The application
semantics is reconstructed from the messages and used to build
user understandable alarms and models; for example capturing the
normal commands sent and the ranges used for their arguments.

Reconstructing semantical information from messages requires
an in-depth protocol parser to extract information and a semantic
model to interpret the extracted information. For instance, in Mod-
bus/TCP, one needs to parse the application layer to obtain function
code 16 and then map this to the “Write Multiple Holding Regis-
ters” operation. Two limiting factors to extracting the semantics are
i) protocol expressiveness; some protocols use the same code for
multiple concepts and ii) availability of automatically importable
system specifications.

If specification documents are available, they are often expressed
in natural language, requiring lengthy and expensivemanual import
operations. Here, we limit the required effort by leveraging the fault
detection specification. We still need to specify how concepts from
the formal language manifest themselves in the ICS network traffic,
however, we only need this for those concepts actually used in the
monitoring specification, not for every possible message. Further
automation of this (for example by linking concepts to the PLC
ladder logic) is an interesting venue for future work.

Information needed to build semantical concepts may be dis-
tributed over multiple events. We use the approach of [17] to build
features spanning multiple messages: a group of messages is formed
by filtering events between a (logical) start and an end condition. A
feature extracts a value (e.g., a duration) from the resulting sequence
of events.

White-box framework. The starting point for our anomaly
detection model is a set of messages within the system. Network
traffic consists of normal messages (the majority) and malicious
messages. What constitutes normal traffic typically depends on
the context, e.g., which user is sending a message and what is the
destination of the message.

Directly estimating the distribution of normal messages to dis-
tinguish them from malicious messages is infeasible. Therefore, we
consider the features of a message that capture its relevant proper-
ties. Examples of features are the destination IP address of amessage,
the function being called on that destination, an argument to that
function, etc. We consider numerical features (e.g., integers) and
nominal features (e.g., names). Besides these elementary features,
we also consider compound features, which are tuples of numeric

and/or nominal values, and derived features, which are relations
between elementary features (such as the sum of two numerical
features). Together, all features form a feature vector, which extracts
value vectors out of the messages. Take as an example a Modbus
message from 192.168.0.30:1500 to 192.168.0.100:80 that calls func-
tion 5 with argument 15. If we have a feature vector (‘connection’,
‘function_code’, ‘parameter_1’), that would yield the value vector
((192.168.0.30:1500, 192.168.0.100:80), 5, 15).

Malicious messages may have the same values as normal mes-
sages on some features. However, if we choose the right features,
they will have values that are rare among normal traffic on at least
one of the features. For features that can take many different values,
such as numeric features, individual values may be rare even for
normal traffic. Yet rare values should indicate that a message is
likely an attack. Therefore, we group values into bins and consider
the occurrence of bins rather than individual values. For nominal
features we usually consider the binning where each bin consists of
a single element, for numeric features we usually consider bins that
are ranges [vl ,vu) and for compound features we consider bins
that are the product of such bins. Our fundamental assumption is
that for attack messages a feature will yield bins with low proba-
bility. We are therefore looking for anomalies, messages where the
probability of some feature is below a given threshold.

Our main goal is to find anomalies alongwith their causes so they
can be presented to an operator who can then evaluate and address
them. We could define anomalous messages as those yielding an
anomalous value on one of the features. However, not all entities
on a system behave the same. Thus, what is normal for one entity
may be anomalous for another. To address this we introduce profiles
which are conditional distributions describing the normal traffic
per entity. We use a profiling feature, which we assume is the first
feature in a feature vector, to determine the ‘entity’ for a message.
In this way we can for example make a profile for each source IP, for
each destination IP or for each connection. A message is anomalous
when the entity involved is anomalous or when one of the features
of the message is anomalous for that entity. We call such feature a
cause of the anomaly.

One can use a single global threshold for all features and bins, a
threshold per feature, or even per individual bin. The choice of a
profiling feature is based on its ability to distinguish between sets
of behavior. In industrial control systems, devices tend to follow
different behavior patterns, which makes device identifiers suitable
profiling features.

4 FROM SPECIFICATION TO MONITORING
AND BACK

In this section, we describe and illustrate the proposed methodology
to enhance monitoring with anomaly detection. System properties
that contain uninterpreted predicates provide the context and fea-
tures for the anomaly detection. We focus on invariant properties
Gϕ. We again use the bottle filling plant scenario and assume that
there is only one bottle on the belt at a time. This avoids complicat-
ing formulations to take into account multiple opening/closing of
the valves and linking these to the right bottle.

A key property in our bottle filling scenario is that the mixture
should be valid once the filled and mixed bottle passes the quality

check (event bottle_ok), which can be expressed as:

G(bottle_ok → ?Valid(inдr1, inдr2)) .

Since an invariant should always hold, we can assume that
?Valid(inдr1, inдr2) is normally true within context bottle_ok; its
negation is an anomaly. We thus aim to find anomalous values for
the diagnosis features inдr1 and inдr2, i.e. the parameters of the
uninterpreted predicates, within this context. A diagnosis feature
t might not be directly observable. Therefore, the next step is to
define a monitoring specification capturing the diagnosis features
in terms of observable events. With contextψ we require that the
system model satisfies G(ψ → t = f (O)) for some term f over
observable features O ⊆ Vobs ∪ Eobs .

In our scenario, the messages on channels M2RTU, RTU2PLC,
and PLC2PP are the observables and we need to find a formal rela-
tionship between them and the diagnosis features (inдr1, inдr2). In
the system model we can prove that, when bottle_ok, the ingredient
amounts are exactly those set remotely through a message to the
PLC. Formally:

G(bottle_ok → inдr1 = setpoint_1@last(RTU2PLC.msg)) ,

G(bottle_ok → inдr2 = setpoint_2@last(RTU2PLC.msg)) .

Using this relationship to obtain the monitoring features means
monitoring the RTU2PLC channel for anomalous setpoint values.
An anomalous mixture being set, e.g., due to an attacker manipu-
lating the communication before it reaches the PLC, will result in
an alarm.

When an alarm is raised, it is analyzed to determine whether
it is a false or true alarm. From this feedback, we learn a formula
ψ to refine our specification. In case of a false alarm, the anomaly
detection model gets updated. In case of a true alarm, we refine
the system specification to disallow it in this context. For example,
assume that we get a true alarm which states that inдr1 = 0, which
is unusual, and the operator, realizing neither ingredient should be
0, generalizes the feedback toψ = (inдr1 = 0∨ inдr2 = 0). We then
update the system with invariant:

G(¬(bottle_ok ∧ (inдr1 = 0 ∨ inдr2 = 0))) .

The system implementation can be refined by adding an FDIR com-
ponent that monitors for one of the ingredients not being present
in the bottle and, in that case, discards it.

With themonitoring specification above, only the setpoint values
are validated, trusting that the PLC will use these correctly. If we
are concerned that the PLC itself may be compromised, we should
validate the actual commands being sent to the physical process.
We can prove on the system model that, when the bottle passes
the quality check, the amount of the first ingredient is equal to the
time passed between opening and closing the first valve, multiplied
by a flow rate (e.g., 10ml/s):

G(bottle_ok → inдr1 = (time@last(open1) −

time@last(close1)) ∗ 10) ,
G(bottle_ok → inдr2 = (time@last(open2) −

time@last(close2)) ∗ 10) .

This monitoring specification uses multiple observable events to
compute the diagnosis feature. The anomaly detection thus consid-
ers the group of messages specified by the filter (open1 ∨ close1 ∨
open2 ∨ close2) from open1 to bottle_ok.

To link abstract events with Modbus messages, the anomaly
detection uses the following mapping:

open1 = PLC2PP .msg.Modbus.⟨regdst = valve1_id, fc = 16, val = 1⟩
close1 = PLC2PP .msg.Modbus.⟨regdst = valve1_id, fc = 16, val = 0⟩

and similar for the other events, where regdst indicates the destina-
tion register to be accessed, fc is the function code of the operation
(16 is awrite operation), and val shows the value to be set. The valves
have one value that can be written, indicating its state: open (1) or
closed (0). We thus still need to extract the semantic meaning for
some network events, but only need to do this for those events and
variables actually used in the monitoring specification.

5 EVALUATION
We evaluated our approach using simulated datasets from our bottle
filling plant example. The datasets consist of a partial specification
of the operation of the plant and two types of network traffic cap-
tures. The first capture type is taken from a standard execution of
the simulated process; the second type is taken after introducing a
malicious attacker in the network, who alters the process variables
sent to the control device.

The white-box anomaly detection approach that we use [17] has
already been shown to be feasible in this setting [51], giving good
trade-offs between false positives and detection rate when applied
on simulated cases as well as on data from real-world applications.

Quantitative analysis in this scenario is not very meaningful:
as stated before, we use an already validated model learning and
anomaly detection engine. Therefore we can avoid computing stan-
dard anomaly detection metrics such as accuracy and false positive
ratio. On the other hand, the scalability of our proposed framework
cannot be evaluated on our small scale simulator, and is one of the
goals left for future work.

Instead, we perform a qualitative analysis of the methodology.
Our use case is simple but not a ‘toy example’; it is realistic enough
that, apart from potential scalability issues, results can be translated
to deployed ICS systems. This allows us to do a realistic qualitative
evaluation showing the feasibility and benefits of our approach of
combining lightweight specification with anomaly detection.

After explaining the experimental setup (Section 5.1), we divide
our evaluation in three steps. First, we select the features to use in
our white-box anomaly detector and evaluate how the partial spec-
ification improves the selection over a naive baseline (Section 5.2,
“From specification to feature selection”). Second, we train the
anomaly detector and test it against our simulated attacks to the
process: we assess how the high-level knowledge from the specifi-
cation improves the actionability of the resulting alerts (Section 5.2,
“From specification to anomaly detection”). Third, we evaluate
how the results of our anomaly detection help us complete the
under-specified predicates of the partial specification (Section 5.2,
“From anomaly detection to specification”).

Figure 3: Overview of the simulator

5.1 Experimental setup
Simulator. Figure 3 shows an overview of the simulator we

used, which has five components modeling different parts of the
bottle filling plant in Figure 1.

The Physical Process shown in Figure 1 is implemented by the
Physical World Simulator, which simulates the conveyor belt, the
bottles, and the sensors and actuators of the manufacturing process.
The simulator automatically advances the conveyor belt every half
second; it also keeps track of the position of each bottle on the belt,
as well as the volume of liquid contained in it. The sensors and
actuators are managed by the PLC via Modbus/TCP thanks to a
Modbus client contained in the simulator. The Engineering Work-
station was not shown in Figure 1 because it is not part of the main
plant process, but is used to program the control logic, download
it to the PLC using the S7 protocol [40], and to display the local
HMI that is placed in the local area of the plant. It is a Windows
XP machine running Siemens TIA Portal v123 and is directly con-
nected with the PLC. The PLC used in this simulator is a Siemens
S7-1200, which communicates with the RTU via Modbus/TCP. The
RTU component is the same as the one shown in Figure 1: it is
used to connect the remote SCADA with the PLC. The RTU is lo-
cated in the factory and it controls only one PLC; its main task is
to translate the messages that the remote SCADA sends by using
the IEC 60870-5-104 [27] protocol into Modbus/TCP messages and
vice versa. The last component is the Remote SCADA/HMI, used
to display the process to the remote operators: in our use case, it
resides in the company’s headquarters.

Overall, most key components in our simulator are physical
devices or systems actually used in practice, such as the PLC or the
engineering stations running actual SCADA management software.
Only the physical process, as well as some parts of the underlying
network that connect to it, are simulated. The resulting simulator
is therefore not just a collection of scripts: it is a significant cyber-
physical system.

Datasets. We captured five datasets from the simulation, as
shown in Table 1. Column ‘Dataset’ shows the name of the dataset;
‘#Messages’ reports the number of messages in the dataset; and
‘Time’ is the time span of each dataset. The first three datasets

3http://www.industry.siemens.com/topics/global/en/tia-portal/Pages/default.aspx

http://www.industry.siemens.com/topics/global/en/tia-portal/Pages/default.aspx

Figure 4: Overflow attack. The remote HMI (left) shows the
setpoints sent by the operator (setpoint_1 = 30, setpoint_2 =
30). The local HMI (right) shows the setpoints manipulated by the
attacker (setpoint_1 = 60, setpoint_2 = 100).

represent the normal operation of the plant, producing 1, 10, and 80
bottles, respectively. The last two datasets have the injected attacks
described below.

Attacks. To create traffic captures that can be used to test our
detection capabilities, we implemented two man-in-the-middle at-
tacks that tamper with the Modbus communication between the
PLC and the RTU (RTU2PLC channel in Figures 1 and 3). Both
attacks intercept the original communication, learn the setpoints
sent by the operator to the PLC, store them, and modify them with
new values. As a result, the PLC receives incorrect setpoints and
controls the actuators accordingly. The attacker then modifies in-
formation sent by the PLC to the RTU so that the SCADA system
receives wrong process information and the operator is unaware
of the attack.

The first attack is demonstrated in Figure 4: it aims to overflow
a bottle by raising the setpoints of the two valves, controlling them
to stay open for longer than they are supposed to. These changes
have a combined effect of a larger spillage of product than what
each bottle can contain, potentially causing economical damage
due to wasted ingredients, or disrupting the production line.

The second attack aims to alter the quality of the final product, by
modifying the setpoints of the two valves so that the total volume of
liquid is the same as before, but the ratio of ingredients in a bottle is
changed. The attacker selects the new setpoints fromwithin a range
of previously observed values, to avoid them from being detected
as anomalous. Changing the composition of the final product can
cause delayed economical damages such as product recall costs, or
lost revenue due to inferior product quality.

Table 1: Datasets used in the experiments

Dataset #Messages Time
normal-1bottle 17034 60 s
normal-10bottles 38702 143 s
normal-80bottles 267291 1027 s
modbus-overflow 77511 214 s
modbus-ratio 77511 214 s

Implementation. Figure 5 shows the implementation of our
methodology based on the elements described in Figure 2. We
capture the traffic of the local network within the remote factory:
specifically, we consider the traffic being sent to and from the
PLC. This means that we are downstream from the man-in-the-
middle attacks, and see the modified, malicious values that are
injected. We use pyshark4, a Python binding for tshark5, to parse
the network traffic captures and extract the process variables from
the application layer of Modbus packets. We store the normal traffic
and attack traffic datasets in a tidy data format [50], where each
row is a single observation of a process variable, consisting of a
low-level unique identifier, a timestamp, and the observed value.

To assist the human operator in assigning a high-level label to
the process variables, we classify them and visualize their values in
an interactive plot, shown in Figure 6. The operator can explore,
reorder, and compare the process variables before labeling them:
the assigned labels are then used instead of the unique identifiers.

We exploit this label-based indexing to easily define Python
functions to select and (optionally) combine process variables from
the dataset. An example is shown in Figure 5 (top right), where
total_liquid_in_bottle is defined as the sum of setpoint_1
and setpoint_2.

We base our implementation of the model learning and anomaly
detection modules on previous work [51]. After learning the bins
and detection thresholds for each process variable, we store the re-
sults in a text file structured in JSON. This choice allows for human
inspection and modification, while still being understandable by
our detection engine. An excerpt of the text file is shown in Figure 5
(bottom right), where the bin for total_liquid_in_bottle is the
interval [50, 100].

Finally, we modify the alerts shown on screen by the anom-
aly detector to be more descriptive. We do so by referencing the
anomalous process variables by their high-level label, by mention-
ing which threshold is being violated, and by adding optional cus-
tom messages that can better explain the context of the alert. An
example of such an alert is shown Figure 5 (middle right), where
the operator can clearly see that the bottles may be overflowing.

5.2 Experiments
From specification to feature selection. To provide a naive

baseline for feature selection, we first attempted to classify and
label process variables using only low-level information gathered
from the network traffic data. Out of 26 detected process variables,
we managed to confidently assign a high-level label to only 4. Of
those identified variables, the binary variable system_on repre-
sents the on/off state of the whole bottling line; and the other
three counter variables bottles_started, bottles_on_belt, and
bottles_done, represent the total number of bottles that started
being processed, those that are being processed at the moment (i.e.
on the moving belt), and the total number of bottles that completed
the process, respectively. For some of the other variables, we no-
ticed that the timings of their change points are usually correlated:
this observation suggested a logical ordering of operations, but was
not sufficient to meaningfully label the involved variables.

4https://github.com/KimiNewt/pyshark
5https://www.wireshark.org/docs/man-pages/tshark.html

https://github.com/KimiNewt/pyshark
https://www.wireshark.org/docs/man-pages/tshark.html

Figure 5: Implementation. The boxes on the right show an example of label-based combination of process variables (top), an example of
actionable alert message (middle), and an example of easy to edit parameters for the anomaly detector (bottom).

We then used the information contained in the partial specifica-
tion as an aid to labeling. We compared the logical ordering that
we inferred previously, with the high-level concept of events in
the specification. As a result, we could reliably label 22 out of 26
process variables: this is presented in Table 2. We could not label
three constant variables, as their value remained set to 0 across all
the training data; and a binary variable, whose behavior was not
reflected in the specification.

Finally, we used the invariant properties of the specification as
guidelines to select and combine specific process variables into
derived features. For example, the bottle_ok property relates to
the total amount of ingredients in a bottle: we therefore created
the total_liquid_in_bottle feature, defined as the sum of the
two setpoints for inдr1 and inдr2. Additionally, to test the under-
specified predicate ?Valid , relative to the quality of the final product,
we combined the setpoints for the volume of the two ingredients
in a (setpoint_1, setpoint_2) compound feature, to which we
assigned the composition label.

From specification to anomaly detection. We trained the
anomaly detector using only labeled features: that is, we used only
the subset of process variables that were assigned a high-level label
during the feature selection, plus the variables derived from them.
We tested the trained anomaly detector on the first attack dataset,
where the attacker overflows a bottle by incrementing the two
setpoints on registers R-000 (which we labeled setpoint_1) and
R-001 (which we labeled setpoint_2) to the values 60 and 100.

The detector raised three alerts: one for each setpoint, and a
third for the total_liquid_in_bottle feature. All alerts returned
by the anomaly detection system were of the type shown in the
upper right box of Figure 5.

Within each alert, there is important contextual information such
as the time when the anomalous event happened, which process
variable triggered the anomaly (identified using its high-level label),

if the violated threshold was an upper or lower bound, and the value
of said threshold. Moreover, a custom message indicates the likely
consequence of the anomalous event. All this contextual, actionable
information helps the security operator to determine where and
when the anomaly happened in the production workflow, assess
the possible impact of such an anomaly, and rapidly decide whether
to flag it as a false positive or not.

From anomaly detection to specification. Finally, we show
how alerts raised by our trained anomaly detector can help in
completing the partial specification. To do so, we tested our detector
on the second attack dataset. In this case, the attacker modifies
setpoint_1 and setpoint_2 to alter the ratio between inдr1 and
inдr2, with the intent to alter the quality of the final product. A
naive anomaly detector would not have raised any alert, as neither
process variable individually assumes anomalous values.

Our anomaly detector, though, raised an alert on the
composition=(setpoint_1,setpoint_2) compound feature. Since
we defined this compound feature starting from an under-specified
predicate, the raised alert did not contain enough information to
say what is wrong.

By reviewing the alert and inspecting the anomalous values of
the compound feature, we recognized the anomaly as a true posi-
tive, and from our domain knowledge we inferred that the feature
composition should be related to the ratio of the ingredients in
a bottle (i.e., composition = setpoint_1/setpoint_2). Follow-
ing the method shown in Section 4, we could add the property
G(¬(bottle_ok ∧ (inдr1/inдr2 , k))) to the specification, where k
is a constant defining the ratio of ingredients. The value k = 0.75
was learned from the histogram of the composition compound
feature, which showed that the ratio setpoint_1:setpoint_2 is
always 3:4. Note that in general the expert can use values directly
from domain knowledge in addition to those learned by the model.

system_on
belt_moving
valve_1_on
valve_2_on

mixer_on
30setpoint_1
40setpoint_2
2setpoint_mixer
1703617036ultrasonic

0
3arm_command

192.168.188.2-mb_R-006
at_valve_1
at_valve_2

at_mixer
at_quality_check

10bottles_started
10bottles_done

15
:58

:46

15
:59

:01

15
:59

:16

15
:59

:31

15
:59

:46

16
:00

:01

16
:00

:16

16
:00

:31

16
:00

:46

16
:01

:01

5bottles_on_belt

Figure 6: Interactive plot of the process variables. The plot lasts for 10 consecutive bottle filling operations. The x axis is the time and
the y axis shows the value of each register (labeled with a variable name). Binary variables are shown in dark blue, constant variables in
light blue, sensor measurements in green, counter variables in orange, other variables in black. The operator could not assign a meaning to
the variable 192.168.188.2-mb_R-006, which retains its original, uninformative identifier.

From the examples shown in the paper and the experiments,
we learned that a Valid bottle is one where the amount of neither
ingredient is 0, the total amount in a bottle (defined as the sum of
both ingredients) is in a valid range tl ≤ total ≤ tu and the ratio of
ingredients is constant, as shown in the following invariants:

G(¬(bottle_ok ∧ (inдr1 = 0 ∨ inдr2 = 0)))
G(¬(bottle_ok ∧ (total < tl ∨ total > tu)))

G(¬(bottle_ok ∧ (inдr1/inдr2 , k)))

where the constants tl = 50, tu = 100, and k = 0.75 were learned
from the network data and the variables inдr1 and inдr2, as well
as the event bottle_ok were mapped to network fields as shown in
Figure 6 and formalized in Section 4.

6 RELATEDWORK
Several ICS-specific intrusion detection systems that rely on the
payload of network traffic are available in the literature [15, 24, 25,
28, 30, 45]. These solutions adopt different techniques: detecting
variations in the length or contents of the payload to identify threats
such as buffer overflow or injections [8, 37, 48, 49]; detecting devia-
tions from the protocol specification by using a policy-based [32]
or a learning-based approach [53, 54] to identify attacks that e.g.,

exploit protocol vulnerabilities; and detecting process attacks by

Table 2: Mapping of the registers/coils to labels

coil label coil label
C-000 system_on C-003 valve2_on
C-001 belt_moving C-004 mixer_on
C-002 valve1_on C-005 ?

register label register label
R-000 setpoint_1 R-010 at_quality_check
R-001 setpoint_2 R-011 bottles_started
R-002 setpoint_mixer R-012 bottles_done
R-003 ultrasonic R-013 ?
R-004 ? R-014 bottles_on_belt
R-005 arm_command R-015 pre_valve1
R-006 ? R-016 infra_valve1_valve2
R-007 at_valve1 R-017 infra_valve2_mixer
R-008 at_valve2 R-018 infra_mixer_qc
R-009 at_mixer R-019 post_quality_check

analyzing the trend of physical variables [25, 45] or sequences of
events [15].

There are specification-based approaches that: monitor the val-
ues of known critical variables stored in a controller’s memory [28];
adopt the same state model used during the controller design phase
to detect possible attacks by validating the behavior of variables
against implicit physical constraints [45]; verify power measure-
ments against the known physical behavior of a transformer [30];
or apply model-based prediction to verify whether, given a certain
command, the system can reach an insecure state [33]. Caselli et
al. [14] automated the development of specification rules for net-
worked control systems by using available documentation, but their
solution was implemented for BACnet-based building automation
systems.

On the other hand, learning-based approaches leverage the pre-
dictability of the control and communication flows of an ICS to learn
a prediction model. In [24], the authors propose a passive Modbus
scanner that can gradually learn the patterns in communication and
control flows. Attempts towards single variable monitoring were
proposed in [15, 19, 25], where distinct techniques (thresholding
windows, Markov chains and autoregression, respectively) were
used to learn the behavior of a process. In the first two works, hu-
man inspection is required to validate the role and criticality of each
variable, whereas in [25] heuristics are applied for variable classifi-
cation. Finally, as far as we know, all the available approaches create
models per single variable, missing the opportunity of exploiting
compound and derived variables as we did in our work.

Thewhite box anomaly detection frameworkwas developed orig-
inally for database systems [17]. The framework uses an anomaly-
based engine that automatically learns a model of normal user
behavior, allowing it to flag when insiders carry out anomalous
transactions. It was also integrated into a hybrid framework for data
loss prevention and detection that combines signature-based and
anomaly-based solutions [18]. It exploits an operator’s feedback
on alerts to automatically build and update signatures of attacks
that are used to block undesired transactions before they can cause
any damage. A major difference between the database and ICS set-
tings is that database commands are text-based, instead of binary,
and much easier to interpret than network fields in ICS protocols.
Therefore, the alerts raised in [17] are immediately meaningful,
whereas for ICS we need to assign a meaning by using external
information.

The white-box approach was applied to ICS in [51]. The main
challenge was to derive elementary and compound features from
ICS protocols. This was done by extracting features from ICS pro-
tocol fields, as in this work. However, in that work almost all proto-
col fields become elementary features and compound features are
constructed from sequences of correlated elementary features. A
complementary solution to feature selection was discussed in [52],
where two metrics were shown, namely stability and granularity.
Stability helps finding features that yield rare values in normal
traffic; for a feature F , stability is measured as the likelihood that
a validation value has also been seen in the training. Granularity
is the fraction of information (measured using Shannon entropy)
retained when going from attribute to feature.

Basin et al. have many works using run-time verification for pol-
icy monitoring (see, e.g., [1–5]). Different from our methodology,

these works assume a complete specification of the system and
its properties and do not employ anomaly detection. Koucham et
al. [29] built on results from runtime verification and specification
mining to automatically infer and monitor process specifications.
Such specifications are represented by sets of temporal safety prop-
erties over states and events corresponding to sensors and actuators.
The properties are then synthesized as monitors which report vio-
lations on execution traces. The technique is similar to the ones by
Basin et al., with the difference that specification can be mined from
execution traces. In our work, we do not assume the existence of ex-
ecution traces or logs, instead we use raw network data. However,
using specification mining [31] (or even process mining [47] as
in [35]) after we are able to map semantical information to network
data could be an interesting future development.

7 CONCLUSIONS AND FUTUREWORK
This paper shows how formal specification and anomaly based
monitoring can be combined to overcome the semantic gap between
network anomalies and actionable alerts. We also show that this
combination is to the benefit of both, since the specification can be
refined with the data gathered from network traffic.

We have evaluated our approach on an example smart manufac-
turing setting. We have specified the example scenario, developed
a simulation environment with common attacks, captured network
traffic, built a white-box anomaly detection model, used it to detect
attacks in the form of actionable alerts and to learn predicates that
strengthened the initial specification.

The work presented in this paper has been conducted within the
CITADEL project, which is focused on the development of adaptive
systems for critical infrastructure protection. The smart manufac-
turing scenario is a simplification of a real use case of the CITADEL
project. We are currently working on specifying and gathering
network traffic of the real system. The approach of the project is
based on a formal specification of the system, which enables the
analysis of safety and security properties based on rigorous formal
techniques. A fundamental problem is the monitoring of failures
and, in particular, communication failures, either caused by some
faulty hardware components of the network or by malicious at-
tacks. Monitors are traditionally synthesized automatically from
a formal (automata-based or logic-based) specification of the sys-
tem [21]. However, specifying system properties or the faults that
may occur is challenging and may be not feasible in the face of
unknown behavior, such as attacks. With the methodology shown
in this paper, fault detection is extended to include monitoring for
network anomalies.

7.1 Future work
As mentioned in Section 5, our simulator is too simple to properly
test the scalability of our approach. For this reason, as future work
we aim for further validation against a more complex, real world
use case, such as the Secure Water Treatment (SWaT) testbed [23],
which has been formally specified [38]. This would also be impor-
tant to showcase more kinds of specification properties that we are
able to learn from the anomaly detection. We also aim at extending
the approach to more general under-specified properties, extracting

from the temporal structure of the property the (temporal) context
in which the uninterpreted predicates should hold.

Moreover, we plan to automate as much as possible the mapping
between network fields and elements of the specification. We have
begun exploring the use of association rule mining to learn relation-
ships between process variables. We envision the use of ontologies
as an intermediate step. One scenario that could immediately bene-
fit from the use of ontologies is building automation systems, using
the BACnet protocol6. There are well-known ontologies for BAC-
net7 and the protocol carries variable labels along with the data.
Given the limits of automation, we also intend to pursue the use of
advanced visualization techniques (e.g., [11, 12]) to assist domain
experts in mapping process variables to high-level labels.

Finally, one of the main goals of the CITADEL project is the im-
plementation of an embedded platform that includes mechanisms
to monitor its operation and its interaction with the environment,
and mechanisms to use dynamic reconfiguration capabilities to
maintain safe and secure operation. In the case of CITADEL, bridg-
ing the semantic gap as discussed in this paper has the potential of
producing alerts that can be automatically handled by the system
to bring it to a new safe configuration.

REFERENCES
[1] D. Basin, G. Caronni, S. Ereth, M. Harvan, F. Klaedtke, and H. Mantel. 2014.

Scalable Offline Monitoring. In RV. Springer, 31–47.
[2] D. Basin, M. Harvan, F. Klaedtke, and E. Zălinescu. 2011. MONPOLY: Monitoring

Usage-control Policies. In RV. Springer, 360–364.
[3] D. Basin, F. Klaedtke, S. Marinovic, and E. Zalinescu. 2012. Monitoring Compli-

ance Policies over Incomplete and Disagreeing Logs. In RV. Springer, 151–167.
[4] D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu. Monitoring of Temporal

First-order Properties with Aggregations. In RV. Springer, 40–58.
[5] D. Basin, F. Klaedtke, and S. Müller. Policy Monitoring in First-Order Temporal

Logic. In CAV. Springer, 1–18.
[6] B. Bittner, M. Bozzano, A. Cimatti, R. De Ferluc, M. Gario, A. Guiotto, and Y.

Yushtein. 2014. An Integrated Process for FDIR Design in Aerospace. In IMBSA.
Springer, 82–95.

[7] B. Bittner, M. Bozzano, A. Cimatti, and X. Olive. 2012. Symbolic Synthesis of
Observability Requirements for Diagnosability. In AAAI. AAAI Press, 712–718.

[8] D. Bolzoni, S. Etalle, and P. Hartel. 2006. POSEIDON: a 2-tier anomaly-based
network intrusion detection system. In IWIA. IEEE, 10 pp.–156.

[9] M. Bozzano, A. Cimatti, M. Gario, and S. Tonetta. 2014. Formal Design of Fault
Detection and Identification Components Using Temporal Epistemic Logic. In
TACAS. Springer, 326–340.

[10] M. Bozzano, A. Cimatti, M. Gario, and S. Tonetta. 2015. Formal Design of Asyn-
chronous Fault Detection and Identification Components using Temporal Epis-
temic Logic. LMCS 11, 4 (2015).

[11] B.C.M. Cappers and J.J. vanWijk. 2015. SNAPS: Semantic network traffic analysis
through projection and selection. In VizSec. IEEE, 1–8.

[12] B.C.M. Cappers and J.J. van Wijk. 2016. Understanding the context of network
traffic alerts. In VizSec. IEEE, 1–8.

[13] A.A. Cárdenas, S. Amin, Z. Lin, Y. Huang, C. Huang, and S. Sastry. 2011. Attacks
against process control systems: risk assessment, detection, and response. In
ASIACCS. ACM, 355–366.

[14] M. Caselli, E. Zambon, J. Amann, R. Sommer, and F. Kargl. 2016. SpecificationMin-
ing for Intrusion Detection in Networked Control Systems. In USENIX Security.
USENIX Association, 791–806.

[15] M. Caselli, E. Zambon, and F. Kargl. 2015. Sequence-aware Intrusion Detection
in Industrial Control Systems. In CPSS. ACM, 13–24.

[16] E. Costante, J. den Hartog, M Petković, S. Etalle, and M. Pechenizkiy. 2014. Hunt-
ing the Unknown - White-Box Database Leakage Detection. In DBSec. Springer,
243–259.

[17] E. Costante, J.I. den Hartog, M. Petković, S. Etalle, and M. Pechenizkiy. 2017. A
white-box anomaly-based framework for database leakage detection. JISA 32
(2017), 27–46.

[18] E. Costante, S Etalle, D. Fauri, J.I. den Hartog, and N. Zannone. A Hybrid Frame-
work for Data Loss Prevention and Detection. In S&P WRIT. IEEE, 324–333.

6http://www.bacnet.org/
7http://project-haystack.org/ and http://bacowl.sourceforge.net/

[19] N. Erez and A. Wool. 2015. Control variable classification, modeling and anomaly
detection in Modbus/TCP SCADA systems. IJCIP 10 (2015), 59–70.

[20] Sandro Etalle. 2017. From Intrusion Detection to Software Design. In ESORICS.
Springer, 1–10.

[21] Y. Falcone, K. Havelund, and G. Reger. 2013. A Tutorial on Runtime Verification.
In Engineering Dependable Software Systems. IOS Press.

[22] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. 2007. CombinationMethods for
Satisfiability and Model-Checking of Infinite-State Systems. In CADE. Springer,
362–378.

[23] J. Goh, S. Adepu, K.N. Junejo, and A. Mathur. 2016. A Dataset to Support Research
in the Design of Secure Water Treatment Systems. In CRITIS.

[24] J. Gonzalez andM. Papa. Passive scanning inModbus networks. In ICCIP. Springer,
175–187.

[25] D. Hadžiosmanović, R. Sommer, E. Zambon, and P.H. Hartel. 2014. Through the
Eye of the PLC: Semantic Security Monitoring for Industrial Processes. In ACSAC.
ACM, 126–135.

[26] D. Hadžiosmanović, D. Bolzoni, and P.H. Hartel. 2012. A log mining approach
for process monitoring in SCADA. IJIS 11, 4 (2012), 231–251.

[27] IEC 60870-5-104 2006. Transmission protocols - Network access for IEC 60870-5-101
using standard transport profiles. Standard. IEC.

[28] W. Jardine, S. Frey, B. Green, andA. Rashid. 2016. SENAMI: Selective Non-Invasive
Active Monitoring for ICS Intrusion Detection. In CPS-SPC. ACM, 23–34.

[29] O. Koucham, S. Mocanu, G. Hiet, J. Thiriet, and F. Majorczyk. 2016. Detecting
Process-Aware Attacks in Sequential Control Systems. In NordSec. Springer, 20–
36.

[30] G. Koutsandria, V. Muthukumar, M. Parvania, S. Peisert, C. McParland, and A.
Scaglione. 2014. A hybrid network IDS for protective digital relays in the power
transmission grid. In SmartGridComm. IEEE, 908–913.

[31] C. Lemieux, D. Park, and I. Beschastnikh. 2015. General LTL Specification Mining.
In ASE. IEEE, 81–92.

[32] H. Lin, A. Slagell, C. Di Martino, Z. Kalbarczyk, and R.K. Iyer. 2013. Adapting
Bro into SCADA: Building a Specification-based Intrusion Detection System for
the DNP3 Protocol. In CSIIRW ’13. ACM, 5:1–5:4.

[33] H. Lin, A. Slagell, Z. Kalbarczyk, P. Sauer, and R. Iyer. 2017. Runtime Semantic
Security Analysis to Detect and Mitigate Control-related Attacks in Power Grids.
IEEE SG (2017), 1–1.

[34] Z. Manna and A. Pnueli. 1995. Temporal verification of reactive systems: safety.
Springer.

[35] D. Myers, K. Radke, S. Suriadi, and E. Foo. 2017. Process Discovery for Industrial
Control System Cyber Attack Detection. In IFIP SEC. Springer, 61–75.

[36] Repository of Industrial Security Incidents (RISI). 2015. Online Incident Database.
(2015). Retrieved August 2, 2017 from http://www.risidata.com/Database

[37] D. Perdisci, R.and Ariu, P. Fogla, G. Giacinto, and W. Lee. 2009. McPAD: A multi-
ple classifier system for accurate payload-based anomaly detection. Computer
Networks 53, 6 (2009), 864–881.

[38] M. Rocchetto and N.O. Tippenhauer. 2017. Towards Formal Security Analysis of
Industrial Control Systems. In ASIACCS. ACM, 114–126.

[39] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C. Teneketzis.
1996. Failure diagnosis using discrete-event models. IEEE CST 4, 2 (1996).

[40] Siemens (Ed.). 2013. Cpu-cpu communication with Simatic controllers.
[41] R. Sommer and V. Paxson. 2010. Outside the Closed World: On Using Machine

Learning for Network Intrusion Detection. In S&P. IEEE, 305–316.
[42] A. Swales. 1999. Open modbus/tcp specification. Tech. Report. Schneider Electric.
[43] S. Tonetta. 2017. Linear-time Temporal Logic with Event Freezing Functions. In

GandALF. Open Publishing Association, 195–209.
[44] Trend Micro. 2016. First malware-driven power outage reported in Ukraine.

(Jan. 2016). http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/
first-malware-driven-power-outage-reported-in-ukraine

[45] D.I. Urbina, J. Giraldo, A.A. Cardenas, N.O. Tippenhauer, J. Valente, M. Faisal, J.
Ruths, R. Candell, and H. Sandberg. 2016. Limiting the Impact of Stealthy Attacks
on Industrial Control Systems. In CCS. ACM, 1092–1105.

[46] A. Valdes and S. Cheung. Communication pattern anomaly detection in process
control systems. In HST. IEEE, 22–29.

[47] W. van der Aalst. 2016. Process Mining. Springer.
[48] K. Wang, J.J. Parekh, and S.J. Stolfo. 2006. Anagram: A Content Anomaly Detector

Resistant to Mimicry Attack. In RAID. Springer, 226–248.
[49] K. Wang and S.J. Stolfo. 2004. Anomalous Payload-Based Network Intrusion

Detection. In RAID. Springer, 203–222.
[50] Hadley Wickham. 2014. Tidy data. Journal of Statistical Software 59, 10 (2014).
[51] Ö. Yüksel, J. den Hartog, and S. Etalle. 2016. Reading between the Fields: Practical,

Effective Intrusion Detection for Industrial Control Systems. In SAC. ACM, 2063–
2070.

[52] Ö. Yüksel, J.I. den Hartog, and S. Etalle. 2016. Towards Useful Anomaly Detection
for Back Office Networks. In ICISS. Springer, 509–520.

[53] E. Zambon. 2014. CRISALIS D6.1 Protocol-aware approaches. Technical Report.
EU FP7.

[54] E. Zambon, M. Caselli, and M. Almgren. 2015. CRISALIS D6.4 Network-Driven
Analysis tools. Technical Report. EU FP7.

http://www.bacnet.org/
http://project-haystack.org/
http://bacowl.sourceforge.net/
http://www.risidata.com/Database
http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/first-malware-driven-power-outage-reported-in-ukraine
http://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/first-malware-driven-power-outage-reported-in-ukraine

	Abstract
	1 Introduction
	2 Motivating scenario
	3 Solution overview
	3.1 Specification framework
	3.2 Anomaly detection

	4 From specification to monitoring and back
	5 Evaluation
	5.1 Experimental setup
	5.2 Experiments

	6 Related work
	7 Conclusions and Future work
	7.1 Future work

	References

