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Abstract. Honeypots are increasingly used in Industrial Control Systems (ICS)
to divert attacks from critical assets and study malicious behavior. While prior
work has examined specific aspects of ICS honeypot design, a comprehensive
understanding of cost-effective deployment strategies is still lacking. This work
investigates how interaction level, network type, and geographic location affect the
attractiveness of ICS honeypots. We deploy both low- and high-interaction honey-
pots, alongside a physical device, across corporate and cloud networks in various
geographic regions. We collect and analyze network interactions involving HTTP,
S7Comm, and Modbus protocols from 16 honeypots with diverse configurations
over a three-month period. Our results show that network type has the largest im-
pact on ICS honeypot traffic, while interaction level and geographic location play a
minor role. We also find that low-interaction honeypots capture traffic comparable
to high-interaction setups, supporting their use for general threat intelligence.

1 Introduction

Industrial Control Systems (ICSs) are physical and engineered systems whose operations
are monitored, coordinated, and controlled by interconnected computing and communi-
cation components [25]]. ICSs include Operational Technology (OT), such as Supervisory
Control and Data Acquisition (SCADA), and embedded devices, such as Programmable
Logic Controllers (PLCs), which form the backbone of critical infrastructures.

Modern ICSs are increasingly integrating Information Technology (IT) capabilities
into legacy OT environments. This integration enhances connectivity and remote access
but also creates a more complex and exposed attack surface. ICSs often have long op-
erational lifespans, making them vulnerable to emerging cyber threats. Notable incidents
such as the Stuxnet worm targeting Iran’s nuclear program [6]] and the Industroyer
malware used in the Ukraine power grid attack [15] demonstrate the real-world impact
of ICS vulnerabilities.

To better understand and mitigate these threats, honeypots are increasingly deployed
as decoy systems designed to attract attackers, allowing analysts to observe and analyze
malicious behavior. They serve as early warning systems and deception mechanisms that



divert attacks from critical assets [24]]. Honeypots vary in complexity based on (among
others) their interaction level. Low-interaction honeypots expose limited functionality, re-
quire less effort to deploy, and pose minimal risk of system compromise, but are often eas-
ily fingerprinted and dismissed by sophisticated attackers or scanners like Shodan [|16}21]
26,,291|32]). High-interaction honeypots, by contrast, more closely resemble real systems,
making them harder to detect and better suited for capturing complex attacker behav-
ior [14]. However, they entail higher operational costs and increased risk of compromise.

Beyond the level of interaction, factors such as deployment environment and geo-
graphic location can also influence the effectiveness of a honeypot [3,5,35]. While ICSs
are traditionally deployed on-premise within corporate networks, cloud-based honeypots
are increasingly being considered to avoid exposing real infrastructure. Yet, attackers
may regard ICS honeypots in cloud environments as less credible targets, reducing their
willingness to engage. On the other hand, Shodan scans show that ICS protocols (e.g.,
Modbus, S7Comm) are widely used in cloud environments, although attacker behavior
toward such protocols in cloud environments is not yet well understood. Similarly, the
geographic location of deployments can influence traffic volume and behavior [5L12]/28]].
As ICS devices are unevenly distributed, attacker interest may vary by region, focusing
more on areas with a higher concentration of ICS devices, such as North America, Asia,
and Europe.

However, key challenges remain underexplored in the literature. There is limited
understanding of how specific honeypot characteristics—particularly interaction level,
network type, and geographic location—impact the volume and nature of ICS interactions.
Additionally, while high-interaction honeypots may generate richer and potentially more
interesting threat intelligence, their complexity raises deployment and maintenance
barriers. Understanding these trade-offs is essential for designing effective honeypot-
based defenses for industrial environments.

Contributions. This work examines the impact of interaction level, type, and geographic
region of the deployment network on ICS honeypot attractiveness. To this end, we deploy
16 ICS honeypots in collaboration with Forescout Technology, a cybersecurity company
specialized in threat detection and operational technology security. Our setup includes a
physical PLC (Siemens Simatic S7-1200) and both low- and high-interaction honeypots
emulating the same device, distributed across two network types (corporate network
vs. cloud network) and three geographic regions (Europe, North America, Asia). The
honeypots are exposed to the Internet for three months, during which we collect HTTP,
Modbus, and S7TComm traffic. We characterize attractiveness by traffic volume and
complexity; due to space constraints, we omit a detailed analysis of traffic nature, which
is part of ongoing work. The main contributions are as follows:

— Our findings show that, for ICS honeypots, network type has a stronger influence on
attracting ICS traffic than geographic location or interaction level, highlighting the
need to consider the deployment environment when designing honeypot studies.

— Our study shows that unsolicited ICS traffic is significantly less frequent than IT traffic,
yet its presence may indicate reconnaissance activity and, thus, should be considered
in threat detection efforts.



— Our study shows that low- and high-interaction honeypots receive comparable ICS
traffic, suggesting that low-interaction setups are generally sufficient for generic threat
intelligence gathering.

Outline. The remainder of this paper is organized as follows. Section 2| reviews relevant
background and prior research on ICS honeypots. Section |3| introduces our research
questions. Section [ describes the deployed infrastructure and the methods used to
address the research questions. Section [5] presents the results, and Section [6] discusses
the key findings. Finally, Section [7] concludes the paper.

2 Background and Related Work

This section introduces ICS honeypots, reviews related work, and identifies research gaps.

2.1 ICS Honeypots

ICS honeypots serve multiple purposes, including diverting attackers from critical assets,
studying adversary behavior, and gathering threat intelligence. Like traditional honey-
pots, they are categorized by interaction level. Low-interaction honeypots simulate basic
network behavior without replicating the full device functionality, relying on scripted
actions that attackers may eventually recognize [16]]. Despite this, they remain popular
for their ease of deployment, simplicity, and lower operational risk. High-interaction
honeypots, on the other hand, offer richer emulation by supporting full process control
and interaction with simulated or physical environments, though they require more com-
plex setup and pose greater security risks. Recent frameworks like HoneyICS [17] have
emerged to provide high-interaction capabilities by virtualizing PLCs and linking them to
simulated industrial processes. Built on OpenPLC [2]], a widely used open-source virtual
PLC, HoneyICS supports Modbus natively and integrates Snap7 [22] to enable S7Comm
communication. It allows interaction with a simulated industrial process, offering higher
realism compared to low-interaction honeypots like Conpot [19]. Understanding the
trade-offs between honeypot types is essential for designing effective experiments and
cost-efficient deployment strategies.

2.2 Related Work

Research on ICS honeypots spans several dimensions, including the comparison of
interaction levels and the influence of network type and geographic location. Table
summarizes the literature in this domain.

Level of Interaction. The attractiveness of honeypots with different interaction levels has
been explored primarily in IT and IoT environments. Early IT honeypot studies [1}23]]
found that high-interaction setups complemented low-interaction ones by validating con-
figurations, with most intrusions attributed to inexperienced attackers using automated
tools. However, these findings may not reflect recent advances in attack automation [33]]
and honeypot technologies. Recent work [ 14] highlights the richer data collected with
high-interaction honeypots, though Guarnizo et al. [9] found similar attack patterns



Table 1. Summary of related work

Domain Level of Interaction Deployment Environment
Low-Interaction High-Interaction Physical Level of Interaction Network Type  Region
Honeypot Honeypot PLC Comparison Comparison Comparison
Pouget et al. [23 1T © [ ] O O O O
Alataet al. |1 IT © [ ] O © O O
Bloomfield et al. [4 IT © [ ] O © @ O
Sochor et al. [27] IT { ] O O O o O
Bove et al. [5 1T { ] O O O [ ] [ ]
Kelly et al. [12 IT o O O O © o
Kocaogullar et al. [14] 1T [ ] [ ) O [ J O O
Zou et al. [35] T ([ J O O O O O
Guarnizo et al. [9) IoT [ d [ J O [ J O (D)
Tambe et al. [30] IoT O [ d O O (D) (D)
Jichaetal. [11] ICS [ d O O O O ©)
Dodson et al. |7 ICS @) [ J O O O O
You et al. [34] ICS (D) [ d [ d [ J O (D)
Bieker et al. [3 ICS [ J O O ©) [ J [ J
Maesschalck et al. [19]  ICS [ J O [ J (D) O O
Lupia et al. [18 ICS O [ ] O O O O
Srinivasa et al. [28 I0T/ICS { ] [ ] O [ ) [ ] o
This work ICS ([ ] [ ] [ [ J [ [ ]

Legend: O= Not Discussed, ©= Partially Discussed, @= Fully Discussed.

across interaction levels, suggesting realism does not always boost engagement. Some
studies focus specifically on ICS honeypots. Jicha et al. [[11] and Bieker et al. [3] deploy
Conpot and GridPot variants, but offer limited traffic analysis. Dodson et al. [[7] conduct
a large-scale high-interaction deployment, capturing rare yet significant ICS-specific at-
tacks. Srinivasa et al. [28]] compare RioTPot and Conpot, observing that high-interaction
honeypots attract more interactions, although differences in protocol support complicate
the comparison. Only a few studies compare honeypots to physical PLCs. Maesschalck
et al. [[19] highlight limitations of low-interaction simulations, though their physical
PLC is not exposed to the Internet. Similarly, You et al. [|34]] deploy a physical Siemens
S7-300 PLC and compare its function code coverage with Conpot, but their setup lacks
a physical process, limiting realism. Overall, research involving physical ICS honeypots
remains limited. Prior work rarely includes online deployments of physical devices,
and systematic comparisons between physical, high-, and low-interaction honeypots are
lacking. As a result, the relative effectiveness of these honeypots remains underexplored.

Network Type. Several studies have examined how network type influences IT honeypot
interactions. Bloomfield et al. [4]] find that high-interaction IT honeynets in corporate
environments attract more attacks than those in small- to medium-sized enterprises, likely
due to public IPs and greater visibility. Sochor et al. [27]] show that attackers differentiate
between academic and commercial IP ranges. Kelly et al. [[12] observe higher attack
volumes on Google Cloud compared to AWS and Azure, though the use of different
cloud locations may have influenced the results. Other studies deploy honeypots across
network types without analyzing the effect. For instance, Guarnizo et al. [9]] and Tambe
et al. [|30] deploy IoT honeypots in local networks with cloud-based forwarders but do
not evaluate environmental differences. Bove et al. [5]] find minimal variation in SSH
intrusions between cloud and internet-connected hosts. Bieker et al. [|3]] observe lower
ICS traffic in cloud honeypots than academic networks, attributing this to the scarcity of
ICS devices in the cloud, although their sequential deployment limits confidence in their
findings. In contrast, Srinivasa et al. [28|] conduct a parallel deployment in corporate and



cloud networks, detecting more ICS traffic in the cloud. Although these studies suggest
network type may influence attacker behavior, systematic evaluations in ICS remain
scarce. Most prior work focuses on IT systems and rarely includes controlled, parallel
deployments that isolate network effects.

Region. Prior research highlights the importance of deploying honeypots across diverse
locations to uncover regional variations in attacker tactics. For instance, Dodson et al. [7]]
advocate geographically distributed honeypots to capture a broader spectrum of attack
strategies. Building on this, Zou et al. [35] deploy high-interaction IT honeypots in East
Asia, Western Europe, and US East via Azure, observing notable differences in traffic vol-
ume and unique IPs across regions. Similar trends are also reported in [5}/12]. Srinivasa
et al. [28] report Europe attracted the most malicious IoT/ICS traffic, followed by the
US and Asia, while Bieker et al. [3]] record more ICS traffic in Asia than in the US. Most
of these findings, however, are based on IT honeypots, leaving geographic influences on
ICS honeypot attractiveness underexplored. In addition, inconsistent experimental setups
between locations make it difficult to isolate geographic effects from other variables.

2.3 Research Gaps

To the best of our knowledge, there is no systematic comparison of interaction levels—
low and high—in ICS environments. Existing studies often use inconsistent setups or
overlook how these configurations influence honeypot attractiveness. This limits our
ability to assess the trade-off between deployment cost and effectiveness. Moreover,
the impact of the deployment environment is still unclear. While some studies suggest
differences in traffic between cloud and corporate networks, these findings often rely on
sequential deployments or vague threat classifications. Without controlled, concurrent
experiments, the true impact of network context on honeypot attractiveness remains
unclear. Geographic location is another underexplored factor. While IT-focused research
highlights regional differences, ICS studies are limited in scope and often inconsistent
in results. A broader and systematic evaluation across locations is needed to assess how
the deployment region influences the attractiveness of ICS targets. Finally, interactions
between factors—such as network type and geographic location—are rarely investigated.
This lack of multi-dimensional analysis restricts our understanding of how ICS honey-
pots are perceived in practice. Addressing these gaps through systematic evaluations
would enhance our understanding and offer clearer guidance for honeypot deployment.

3 Research Questions

Previous studies have examined various honeypot types and configurations, often fo-
cusing on isolated aspects (cf. Section [2.2)). However, honeypot attractiveness may
depend on a broader, potentially interdependent set of factors, including interaction
level, network type, and geographic location. This work systematically investigates how
these factors influence the attractiveness of ICS honeypots. Our first research question
investigates the role of interaction level. High-interaction honeypots, including those
involving physical PLCs, can capture more sophisticated behavior, but they are also
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Fig. 1. Methodology Overview

more complex to deploy and operate. Understanding their impact helps assess when the
added complexity is justified.

RQ1: To what extent does the level of interaction supported by an ICS honeypot influence
the attractiveness of the honeypot?

Realistic IP addresses are key for honeypots to avoid detection [7[]. While cloud
setups offer convenience and isolation, ICS devices are typically tied to physical infras-
tructure, making corporate deployments appear more authentic. This raises the question
whether corporate-based ICS honeypots are more attractive than cloud-hosted ones.
RQ2: To what extent does the network type on which an ICS honeypot is deployed
influence the attractiveness of the honeypot?

Prior work suggests that attacks can vary by region, motivating the geographic
distribution of ICS honeypots [7]. To investigate this, ICS honeypots should be deployed
in diverse locations to assess whether geographic location affects attractiveness and
reveals potential regional differences in traffic captured.

RQ3: To what extent does the geographic location of an ICS honeypot influence the
attractiveness of the honeypot?

4 Methodology

An overview of our methodology is shown in Fig. [I] After defining the experiment
conditions (Sectiond.T)), we deploy the data collection infrastructure and collect data
over a 90-day period (Section [4.2)). To answer the research questions, we evaluate
protocol-specific attractiveness across honeypots by comparing the captured traffic based
on interaction level (RQ1), network type (RQ2), and geographic region (RQ3).

4.1 Experiment Conditions

We define 12 experiment conditions in our study (Fig. ). Each condition corresponds to
a specific configuration of the honeypot, determined by three variables: the interaction
level it supports, the type of network in which it is deployed, and the geographic region
of deployment. We now discuss the choices made for each of these variables.

Interaction Levels. To assess how interaction level affects honeypot attractiveness
(RQ1), we deploy three setups: a low-interaction ICS honeypot, a high-interaction ICS
honeypot, and a physical ICS device. To allow meaningful comparison, all honeypots sim-
ulate the same device type and expose the same ICS protocols. Specifically, we choose
the Modbus and S7Comm protocols due to their high diffusion in the wild [20,26]. We
select the S7-1200 as the physical PLC due to native protocol support and wide ICS



adoption. We use Conpot [19] for low interaction and HoneyICS [|17] for high interaction.
Both can simulate a Siemens S7-1200 PLC, support Modbus and S7Comm, and host
a static web server. All setups appear similar externally but differ in interaction level:
Conpot gives static responses, HoneyICS offers process interaction via Modbus only,
and the PLC offers process interaction via both protocols and full device configuration
via S7TComm. The interaction levels of the three setups are detailed in Appendix

Network Types. To assess whether network type affects honeypot attractiveness (RQ?2),
we consider a corporate network and a cloud-based network. The corporate network
reflects a realistic ICS setup, with on-premise devices accessible via public IPs. In
contrast, cloud networks are commonly used only for honeypot deployments [3},5}/12].
By comparing the two, we aim to determine whether they are perceived differently in
terms of attractiveness. To control for geographic bias, one cloud deployment is placed
in the same region as the corporate network (Europe); see Section for details.

Geographic Regions. To assess the influence of geographic region (RQ3), we consider
three global regions: Europe, North America, and Asia. This selection follows prior
research and Shodan scans showing these areas host the most publicly accessible ICS
devices. According to Shodan, the US has the highest number of exposed ICS devices
using Modbus and S7Comm, making it the best representative for North America. While
China ranks second, infrastructure restrictions prevent server deployment there; thus, we
choose Singapore, ranked third, to represent Asia. The choice for Europe reflects the
location of the corporate network available for our study (see Section §.2)).

4.2 Data Collection

Infrastructure. Based on our experiment conditions (Section 4.1), we set up the in-
frastructure to enable data collection (Fig. 2). The infrastructure encompasses 16 ICS
honeypotﬂ All honeypots expose HTTP, S7TComm, and Modbus services. They are
deployed on a corporate network and exposed on the cloud network using proxies. This
ensures consistent behavior across network types and regions. We now describe key
details of the infrastructure.

Honeypots. We deploy Conpot as a Docker container and customize it to mimic a Siemens
S7-1200 PLC. Customization involves modifying Conpot’s default templates to update
its web interface and the scripted S7Comm and Modbus responses. We deploy two Hon-
eyICS instances in a Docker environment that simulates a production process controlled
by virtualized S7-1200 PLCs. Each virtualized PLC exposes the same services (Modbus
and S7Comm) and a web interface. The physical Siemens S7-1200 PLC interacts with
HoneyICS via Modbus and controls part of the same (simulated) physical process. To
this end, its ladder logic is built and loaded using Siemens TIA Portal software. To ensure
continuous operation under attack, an automated script monitors the PLC integrity and
restarts it when needed (e.g., if forced into STOP mode).

Deployment. We deployed our honeypots using the infrastructure and resources of
Forescout Technologies, including a subscription to Amazon Web Services (AWS). The
four honeypots are hosted on a corporate network in the Netherlands, each with a unique

5 Note that we deploy two instances of HoneyICS, resulting in 16 honeypots across the 12 ex-
periment conditions in Section This allows us to estimate variability in the collected traffic.
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Fig. 2. Architecture of the honeypots and AWS proxies

IPv4 address leased from a Dutch ISP that supports enterprise and ICS environments, to
guarantee realism. For the cloud instances, we leverage Forescout’s subscription to AWS.
Based on our experiment conditions (Section fi.T)), we selected three AWS regions: US
East (North Virginia), Asia Pacific (Singapore), and EU Central (Frankfurt), which is the
AWS region closest to the corporate network. Instead of duplicating instances, we deploy
lightweight proxies on AWS that forward traffic to the corporate-hosted honeypots. Each
proxy has a dedicated Elastic IP to ensure stable public access across reboots.

Packet Capture and Storage. All traffic to and from the honeypots on ports 80 (HTTP),
102 (S7Comm), and 502 (Modbus) is captured as PCAP files using tcpdump [31]]. The
packet capture setup varies depending on the network environment. In the corporate
network, it integrates with the existing infrastructure, which includes a pre-configured
mirroring system. All traffic is mirrored to an external analysis system and stored in an
AWS S3 bucket using tcpdump. For AWS deployments, a challenge arises as requests
are proxied, so honeypots log correct payloads but proxy IPs. To address this, we capture
traffic on the proxies. Tcpdump filters ensure proxy traffic is excluded from honeypot
captures and vice versa, so each system records only its own interactions. PCAP files are
saved on separate virtual drives for each honeypot and proxy to protect against system
failures. File sizes are limited to 100 MB to reduce data loss in case of corruption.

Dataset. Data collection took place over 90 days, between December 21, 2024, and
March 21, 2025. In this period, all incoming and outgoing packets for each honeypot are
captured and stored as PCAP files. This format allows us to extract all relevant traffic
details, such as source and destination addresses, protocols and payload content (e.g.,
Modbus function codes). As a preliminary step, we removed all traffic generated from
IPs under our control to remove any bias in the data. Table 2] summarizes the distribution
of HTTP, Modbus, and S7Comm requests across honeypots.

4.3 Data Analysis

To answer our research questions, we characterize and compare interactions across
different honeypot deployments. To this end, we first introduce the notion of interaction
and define the metrics for assessing honeypot attractiveness.

Interactions. We adapt the definition of interaction in [18]]: a sequence of requests that
(1) originate from the same IP, (2) target the same destination IP and port, and (3) occur



Table 2. Observed requests per honeypot
Honeypot Network  Region HTTP Modbus S7Comm

Conpot Corporate EU 27032 1172 1336
HoneyICS1 Corporate EU 26307 776 1682
HoneyICS2 Corporate EU 25829 643 1632
Physical PLC  Corporate EU 15329 695 1658
Conpot Cloud EU 123332 403 761
HoneyICS1 Cloud EU 119915 453 845
HoneyICS2 Cloud EU 117983 460 904
Physical PLC  Cloud EU 60915 411 901
Conpot Cloud Us 73377 415 811
HoneyICS1 Cloud Us 77890 429 875
HoneyICS2 Cloud us 84779 475 920
Physical PLC  Cloud Us 77429 441 889
Conpot Cloud Asia 87613 450 810
HoneyICS1 Cloud Asia 105403 466 979
HoneyICS2 Cloud Asia 84149 425 961
Physical PLC  Cloud Asia 67718 436 841
Total 1175000 8550 16805

within a specified maximum time interval. We exclude the source port to account for tools
that use multiple TCP connections for a single logical task. Following [18], we analyze
inter-request intervals to define appropriate time thresholds, considering potential proxy-
induced delays, particularly in HTTP traffic. For HTTP, we select a 30-second threshold,
which captures 95% of HTTP follow-up requests (from the same IP). For S7Comm and
Modbus, we inspect packet sequences, ensuring continuity of TCP connections. Based on
this analysis, we apply a 15-second threshold across all deployments for both S7Comm
and Modbus, which captures 99.96% and 100% of subsequent requests, respectively.

Attractiveness. We assess attractiveness by interaction volume and complexity. The com-
plexity is measured as the number of requests per interaction, providing an indication of
their sophistication. A honeypot is deemed more attractive if it receives a larger number
of interactions with higher complexity.

Analysis Methods. We aggregate the data according to experiment conditions to assess
attractiveness across different interaction levels (RQ1), network types (RQ2), and ge-
ographic regions (RQ3), analyzing interaction volume and complexity in each case.
To address RQ1, we aggregate interactions by honeypot type (Conpot, HoneyICS1,
HoneyICS2, and the physical PLC) across all deployment environments (corporate net-
work, AWS EU, AWS US, and AWS Asia). To address RQ2, we separately aggregate
interactions from the honeypots on the corporate network and on the AWS EU cloud. To
address RQ3, we focus on cloud deployments and aggregate interactions for each region
(AWS EU, AWS US, AWS Asia). Additionally, we analyze the geographic origin of
IP addresses interacting with the honeypots using GreyNoise [_8] and, where necessary,
IP-API [10]. Grouping IP origins by continent helps assess whether the deployment
region influences the geographic distribution of interactions.

5 Results

This section presents our results, structured around the research questions; we refer to
Appendix [B] for the complete results.



Table 3. Interaction level: volume and complexity
Honeypot Protocol Min Q1 Median Q3 Max Count

Conpot HTTP 1 1 1 2 19994 42321
S7Comm 1 3 3 3 8 1318
Modbus 1 1 1 1 241 1487
HoneyICS1 HTTP 1 1 1 2 12534 40408
S7Comm 1 3 3 3 16 1535
Modbus 1 1 1 1 10 1393
HoneyICS2 HTTP 1 1 1 2 8021 41870
S7Comm 1 3 3 3 16 1529
Modbus 1 1 1 1 16 1348
Physical HTTP 1 1 1 2 7365 38381
PLC S7Comm 1 3 3 3 4 1484
Modbus 1 1 1 1 10 1314

RQ1: To what extent does the level of interaction supported by an ICS honeypot
influence the attractiveness of the honeypot? Table[3|reports the number of interactions
(Count) and their complexity (Min, Q1, Median, Q3, and Max) for each protocol across
different levels of interaction (Conpot, HoneyICS, and physical PLC). The table shows
notable differences between protocols. We now discuss the results for each protocol.

HTTP. Fig. 3| (left) shows the number of HTTP interactions per day for each level of
interaction. For a large portion of the data collection period, we observe no notable
differences between the honeypots. However, we observe a sharp increase in March
for Conpot and both HoneyICS instances, while the physical PLC maintains a stable
trend. This shift may be attributed to differences in the web server technologies used
by the honeypots. Conpot and HoneyICS both employ Lighttpd, whereas the physical
PLC uses a jQuery-based server. A detailed analysis shows that a single IP address is
responsible for the shift (on both Conpot and HoneyICS), repeatedly issuing HTTP GET
requests to /login.cgi/cgi main.cgi with admin/admin credentials. The Lighttpd
servers generate responses that appear to encourage repeated attempts, while the jQuery-
based server returns responses that did not trigger further activity. This suggests that
the observed increase in interactions is primarily driven by server behavior rather than
by the honeypot’s interaction level. Considering the overall number of interactions (see
Table[3), the physical PLC receives the fewest interactions, followed by HoneyICS, while
Conpot receives the most. Even among honeypots with the same interaction level (Hon-
eyICS1 vs. HoneyICS2), we observe a noticeable variation in the number of interactions,
further suggesting that interaction level alone does not determine HTTP attractiveness.
Moreover, Table|3|shows that the Min, Q1, Median, and Q3 values are identical across
honeypots, indicating that at least 75% of interactions have similar complexity regardless
of the honeypot’s interaction level. The main difference lies in the maximum complexity:
Conpot exhibits the most complex interaction, followed by HoneyICS and then the
physical PLC. Again, notable variation between the two HoneyICS instances reinforces
the conclusion that interaction level does not consistently influence the attractiveness
or complexity of HTTP interactions in ICS honeypots.

S7Comm. Fig. 3] (center) reports the S7Comm interactions per day for each interac-
tion level. The curves are closely aligned, indicating minor differences in interaction
frequency across levels. Conpot consistently receives the fewest interactions. Honey-
ICS shows the highest activity, with its two instances differing by only six interactions
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(Table 3). The physical PLC follows, with approximately 50 fewer interactions (3%),
indicating a comparable level of engagement. The distribution of interaction complexity
is nearly identical across all honeypots (Table [3). Outliers are scarce for Conpot and
both HoneyICS instances, while absent for the physical PLC.

Modbus. Fig.[3] (right) reports the Modbus interactions per day for each interaction level.
All levels of interaction show similar daily trends, but Conpot exhibits the most frequent
and highest peaks, while HoneyICS and the physical PLC follow a comparable but lower
pattern. This trend is consistent with the total interaction counts shown in Table [3] where
Conpot receives approximately 100 more interactions (7%) than HoneyICS and about
170 more than the physical PLC (12%). These findings suggest that Conpot attracts
more Modbus interactions compared to the higher-interaction counterparts. Across all
interaction levels, most Modbus interactions have a complexity of 1. For HoneyICS and
the physical PLC, the few interactions with higher complexity comprise 6 and 10 requests,
while for Conpot, they mostly comprise 2 or 3 requests (Table[3). An in-depth analysis
shows that this difference in complexity is influenced by how Conpot responds to a tool
used by Crowdstrike. This suggests that interactions with low-interaction honeypots tend
to be less complex than those with high-interaction honeypots or physical PLCs. However,
Conpot was involved in one interaction comprising 241 requests, while they were at
most 10 and 16 for HoneyICS and 10 for the physical PLC. This suggests that while
Conpot typically attracts simpler interactions, it can also elicit highly complex behavior.

Answer to RQ1. The interaction level does not consistently determine the attractiveness
of an ICS honeypot. For HTTP, server configuration had a greater impact on interaction
patterns than interaction level. In the case of S7TComm, HoneyICS was slightly more
attractive, while for Modbus, Conpot drew more interactions. Overall, attractiveness
appears to depend more on protocol-specific factors than on interaction level alone.

RQ2: To what extent does the network type on which an ICS honeypot is deployed
influence the attractiveness of the honeypot? Table[dreports the number of interactions
(Count) and their complexity (Min, Q1, Median, Q3, and Max) for each protocol across
network types (corporate vs. cloud). We now discuss the results for each protocol.

HTTP. Fig.[d (left) shows the HTTP interactions per day for both the corporate network
and the cloud network (AWS EU). Across the entire observation period, the cloud
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Table 4. Network type: volume and complexity
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Corporate HTTP 1 1 1 2 8021 30700
S7Comm 1 3 3 3 7 2258
Modbus 1 1 1 1 241 1585

Cloud HTTP 1 1 1 2 7269 44365
S7Comm 1 3 3 3 8 1183
Modbus 1 1 1 1 10 1313
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network consistently receives more HTTP interactions than the corporate network (45%),
suggesting that it is more attractive for HTTP-based activity. The distribution of HTTP
interaction complexity is largely consistent across both networks, with only minor differ-
ences. As shown in TableE], the Min, Q1, Median, and Q3 values are identical, indicating
similar interaction patterns regardless of network type. The only notable distinction is in
the maximum observed complexity, which is approximately 750 higher on the corporate
network. This suggests that while HTTP interactions are largely comparable across
networks, the corporate network occasionally attracts more complex requests.

S7Comm. Fig. ] (center) reports the S7TComm interactions per day for both the corporate
and cloud networks. Over the entire observation period, the corporate network consis-
tently receives more S7Comm interactions than the cloud network. This trend is con-
firmed by Tabled] which shows that the corporate network records approximately twice
as many S7Comm interactions (91%), suggesting it is more attractive for this protocol.
The overall complexity is almost constant in the two networks, which shows a maximum
complexity of 7 and 8 requests for the corporate and cloud networks, respectively.

Modbus. Fig. [ (right) shows the Modbus interactions per day for the corporate and cloud
networks. While both exhibit fluctuations, the corporate network consistently receives
more interactions. Table [4] confirms this trend, showing that the corporate network
receives approximately 270 more interactions (21%), suggesting it is a more attractive
target for Modbus traffic. Table 4] shows that the overall distribution is largely the same
on both networks, with most interactions having a complexity of 1. The difference in
maximum complexity is due to a single outlier from Conpot on the corporate network,
as noted in the RQ1 analysis. The maximum complexity for all other honeypots on the
corporate network is 10, matching that of the cloud network. This suggests that, overall,
interaction complexity for Modbus does not meaningfully differ between network types.
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Table 5. Geographic region: volume and complexity
Location Protocol Min Q1 Median Q3 Max Count

EU HTTP 1 1 1 2 7269 44365
S7Comm 1 3 3 3 8 1183
Modbus 1 1 1 1 10 1313
UsS HTTP 1 1 1 2 19994 41386
S7Comm 1 3 3 3 16 1182
Modbus 1 1 1 1 16 1303
Asia HTTP 1 1 1 2 12534 46529
S7Comm 1 3 3 3 16 1243
Modbus 1 1 1 1 10 1341
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Answer to RQ2. Network type affects the volume of interactions for specific pro-
tocols but not their overall complexity. HTTP traffic is more frequent in the cloud
environment, whereas S7Comm and Modbus interactions are more common on the
corporate network. This suggests that while network type influences protocol-specific
attractiveness, it has a limited impact on the sophistication of interactions.

RQ3: To what extent does the geographic location of an ICS honeypot influence its
attractiveness? Table [d] reports the number of interactions (Count) and their complexity
(Min, Q1, Median, Q3, and Max) for each protocol across regions. We now discuss the
results for each protocol, along with the origin of iterations per region.

HTTP. Fig. 5] (left) reports the HTTP interactions per day across different regions. The
trends are relatively similar across regions, although Asia exhibits the highest peaks,
followed by the EU and then the US. Table 5| confirms this pattern, showing that Asia
receives over 2000 more HTTP interactions than the EU (5%) and over 5000 more than
the US (12%). This suggests that Asia is the most attractive region for HTTP interactions.
The complexity is consistent across all regions, with identical Min, Q1, Median, and Q3
values, as shown in Table[5] The only notable variation lies in the maximum values: the
US records the highest at 19,994, followed by Asia (12,534) and the EU (7,269). These,
however, appear to be outliers; most complex interactions for the US and Asia typically
fall between 7,100 and 7,400. Overall, these findings suggest that HTTP interaction
complexity is not strongly influenced by geographic region.

S7Comm. Fig. [ (center) reports the S7Comm interactions per day across different
regions. The trends are relatively similar, with no substantial differences in the number
of S7Comm interactions. As shown in Table 5] Asia receives approximately 60 more




Table 6. Origin of HTTP interactions
Region  Africa Asia Europe North America  Oceania  South America Total

EU 86 (0.19%) 8045 (18.13%) 24201 (54.55%) 11424 (25.75%) 170 (0.38%) 439 (0.99%) 44365 (100%)
IS 84 (0.20%) 5868 (14.18%) 23403 (56.55%) 11455 (27.68%) 154 (0.37%) 422 (1.02%) 41386 (100%)
Asia 313 (0.67%) 8852 (19.02%) 24539 (52.74%) 12185 (26.19%) 169 (0.36%) 471 (1.01%) 46529 (100%)

Total 483 (0.37%) 22765 (17.21%) 72143 (54.54%) 35064 (26.51%) 493 (0.37%) 1332 (1.01%) 132280 (100%)

Table 7. Origin of S7Comm interactions

Region Africa Asia Europe = North America Oceania South America Total

EU 0(0.00%) 92 (7.78%) 227 (19.19%) 817 (69.06%) 0 (0.00%) 47 (3.97%) 1183 (100%)
us 0(0.00%) 115 (9.73%) 183 (15.48%) 817 (69.12%) 0 (0.00%) 67 (5.67%) 1182 (100%)
Asia  0(0.00%) 136 (10.94%) 214 (17.22%) 847 (68.14%) 0 (0.00%) 46 (3.70%) 1243 (100%)

Total 0(0.00%) 343 (9.51%) 624 (17.29%) 2481 (68.76%) 0 (0.00%) 160 (4.43%) 3608 (100%)

interactions than both the EU and the US (5%), while the difference between the EU
and US is minimal, just one interaction. This may indicate that Asia is marginally more
attractive for S7Comm interactions, though the variation is minor. The distribution of
interaction complexity is nearly identical across all regions, as shown in Table 5] The
only notable difference is in the maximum complexity, with both the US and Asia
showing interaction values roughly twice as complex as those observed in the EU.

Modbus. Fig. [5] (right) reports the Modbus interactions per day across different regions.
The trends are relatively similar across all regions, with no substantial differences
observed. Table 5] supports this observation, indicating that Asia receives approximately
30 more Modbus interactions than the EU (2%) and 40 more than the US (3%). Similarly,
the distribution of interaction complexity is nearly identical across regions as shown in
Table[5] The only notable deviation is the slightly higher maximum complexity observed
in the US compared to the other regions.

Origin of Interactions. Tables [0} [7] and [§] present the geographic origin of interactions
for each protocol, with bold values indicating the regions where the honeypots were
deployed. Across all protocols, we observe only minor differences in the distribution of
interaction origins based on deployment region. While the region in which a honeypot
is hosted tends to show a slightly higher share of interactions for that protocol, the
difference is minimal, never exceeding 2.7%. These results suggest that geographic
deployment has limited influence on the origin of incoming interactions, indicating that
honeypot attractiveness is largely independent of deployment region.

Answer to RQ3. Geographic location has limited impact on honeypot attractiveness. For
each protocol, volume and complexity are mostly consistent across regions, with only
minor differences. The origin of interacting IPs also appears unaffected by deployment
region, suggesting ICS honeypots are not systematically targeted based on location.

6 Discussion

The results of this study offer valuable insights into ICS honeypot deployments, providing
key considerations for improving their design and effectiveness in future research.



Table 8. Origin of Modbus interactions

Region  Africa Asia Europe  North America Oceania South America Total

EU  2(0.15%) 163 (12.41%) 218 (16.60%) 887 (67.56%) 0 (0.00%) 43 (3.27%) 1313 (100%)
US 3(0.23%) 147 (11.28%) 200 (15.35%) 903 (69.30%) 0 (0.00%) 50 (3.84%) 1303 (100%)
Asia  5(0.37%) 162 (12.08%) 229 (17.08%) 900 (67.11%) 0 (0.00%) 45 (3.36%) 1341 (100%)

Total 10 (0.25%) 472 (11.93%) 647 (16.35%) 2690 (67.98%) 0 (0.00%) 138 (3.49%) 3957 (100%)

For ICS honeypots, network type matters more than geographic region and interaction
level. Our results show that the interaction level (RQ1) and geographic location (RQ3)
of ICS honeypots have minimal impact on the volume or complexity of traffic across
protocols. In contrast, the network type affects the amount of ICS traffic (RQ2): honey-
pots in the corporate network received 91% more S7Comm traffic than the cloud-host
honeypots (Table [)). This suggests that IPs associated with cloud infrastructure may
be excluded when targeting ICS systems, though retained when scanning for exposed
web applications. Our results partially align with prior work. Zou et al. [35]], using
an IT honeypot, found more IT traffic in certain regions, especially Asia. While we
found similar results for our IT traffic (HTTP), the same behavior cannot be seen in
the OT world (Modbus and S7Comm protocols), where geographical differences are
negligible. This contrasts with Bieker et al. [3]] and Srinivasa et al. [28]], who reported
higher ICS traffic in Asia and Europe, respectively. This discrepancy likely stems from
methodological choices in prior work, such as aggregating results across protocols and
interpreting scanning behavior as inherently malicious. In contrast, our protocol-specific
analysis avoids strong assumptions about attacker intent, offering a more cautious in-
terpretation that may more accurately reflect the nature of unsolicited ICS traffic. Our
findings have two key implications. First, they highlight the importance of protocol-level
analysis when designing honeypot studies or interpreting their results, as the received
traffic may be influenced by the specific services exposed. Second, they suggest that to
attract more ICS-relevant interactions, honeypot deployments should prioritize corporate
environments and expose an HTTP-based HMI alongside ICS protocols. Future work
should analyze how different combinations of ICS and IT services influence honeypot
attractiveness, to guide the design of more effective and targeted honeypot deployments.

While HTTP traffic is more common, unsolicited ICS scans might reveal insights into
industrial system vulnerabilities. We observed a substantially higher volume of HTTP
requests compared to ICS-specific traffic (i.e., Modbus, S7TComm) across our honeypot
deployments. This discrepancy is likely due to the prevalence of broad, automated
scanning activities that primarily target common IT protocols such as HTTP. Although
scanning traffic using ICS protocols was also observed, it occurred at a significantly
lower frequency. These findings indicate that ICS protocols are probed less frequently
than standard IT services, but the presence of unsolicited scans still reflects a degree of
exposure. This has important implications for threat detection: ICS protocol activity, even
when not clearly targeted, may signal reconnaissance behavior directed at operational
technology environments and should be monitored accordingly.

For general threat intelligence, realistic ICS honeypots offer insights similar to simpler
setups but can reveal more about occasional complex and targeted interactions. Our
analysis indicates that both low- and high-interaction honeypots capture similar ICS



traffic, regardless of deployment environment (cloud vs. corporate) or geographic region.
This suggests that for gathering general threat intelligence, the added realism of high-
interaction honeypots offers limited benefit. For this purpose, low-interaction honeypots
provide a more cost-effective and operationally simpler choice. However, the occasional
appearance of more complex interactions—even on low-interaction honeypots as seen
with Modbus in our study—indicates that high-interaction honeypots may still play a
role in capturing and analyzing rare but potentially insightful behavior as they are better
suited for targeted investigations of attack methodologies and post-exploitation behaviors.
This finding underscores the importance of aligning the honeypot type with its intended
purpose, as advocated in [[13]]. Future work should aim to identify concrete criteria
for when high-interaction honeypots are justified, enabling more informed trade-offs
between realism, resource investment, and threat intelligence insights.

Threats to Validity. Internal Validity: Anonymization methods (e.g., VPNs, TOR) and
dynamic IP address reassignment by service providers can affect the accuracy of inter-
action origin. Misattribution of interaction origin may bias regional comparisons, intro-
ducing confounding factors that limit causal interpretations. External validity: Our study
spans a three-month collection period. While a longer period might have captured addi-
tional behaviors, the stability of the observed traffic suggests our findings would remain
unchanged. Our deployments account for a single PLC model and cloud provider and
support Modbus and S7Comm, which may limit generalizability. Although prior work re-
ports differences in honeypot traffic across cloud providers [12], these findings are based
on IT environments; it remains unclear if similar patterns apply to ICS settings. Future
research should examine a broader range of PLCs, ICS protocols, and cloud platforms.

7 Conclusion

In this study, we investigated how different ICS honeypot configurations influence their
attractiveness, focusing on interaction level (low vs. high), network type (corporate
vs. cloud), and geographic region (Europe, North America, Asia). Our infrastructure
included emulated low- and high-interaction Siemens Simatic S7-1200 PLCs and a physi-
cal device, deployed across 16 setups and monitored over three months. Results show that
interaction level and geographic location have minimal impact on traffic, while corporate
deployments attract significantly more ICS activity, especially S7Comm. These findings
highlight the importance of protocol-level analysis and suggest that low-interaction hon-
eypots are generally sufficient for broad threat intelligence. Future work should define
criteria for selecting honeypot types based on deployment goals and investigate how com-
bining ICS and IT services influences honeypot attractiveness. We also plan to further an-
alyze traffic and payloads to uncover attacker patterns and characterize interaction nature.
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A Function coverage for S7Comm, Modbus, and HTTP

Table 9. Function coverage for S7TComm (left), Modbus (center), and HTTP (right)

S7Comm Function ~ Conpot HoneyICS PLC ~ Modbus Function Code Conpot HoneyICS PLC

Setup Communication @ © @ 01 (Read Coils) © (4 (4 —

CPU Information O P)) ° 02 (Read Discr.ele nputs) © ) ) HTTP Permission Conpot HoneyICS PLC

CPU State © (') () 03 (Read Holding Reglsters) © [ J [ J CPU Diagnostics [)) (') [ ]

Start PLC O O () 04 (Rez?d Input Regl:s[ers) 8 : : Flash LEDs O O )

Stop PLC © © @ 5 (Write Single Coil Change Operating Mode O O [ ]

06 (Write Single Register) © [ ] [ J .

Read Data Block O © [ ) . . ! CPU Maintenance O O [ J
X 15 (Write Multiple Coils) © [ ] o e) O °

Write Data Block O O O (Wi Multiple Registers) ~ © o @ [TagAcces

Project Upload O O @  17ReportSlave ID) ) O O  UserDefined Web Pages O o e

Project Download @) O [ 43 (Report Device Information) @ O O Filebrowser Access O O L4

Legend: O= Not Supported, [ )= Partially Supported, ( = Fully Supported.

B Results
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Table 10. Interactions and complexity

Interactions Conpot HoneyICS1 HoneyICS2 Physical PLC
Min Q1 Mdn Q3 Max Count Min Q1 Mdn Q3 Max Count Min Q1 Mdn Q3 Max Count Min QI Mdn Q3 Max Count
Corporate HTTP 1 1 1 2 8003 8146 11 2 7926 7748 1 1 1 2 8021 7759 11 1 363 7047
Network S7comm 13 3 3 4 490 3 3 3 4 594 1 3 3 3 7 580 3 3 3 4 594
Modbus 11 1 1 241 510 11 2 0 382 1 1 1 2 10 339 11 1 10 354
EU HTTP 1 1 1 2 711511090 11 2 710910620 1 1 1 2 7110 11734 11 2 7269 10921
S7comm r3 3 3 8 256 3 3 3 4 301 1 3 3 3 4 317 3 3 3 4 309
Modbus 1 1 1 5 314 11 1 10 33 1 1 1 1 10 345 11 1 10 320
us HTTP 11 1 2 19994 10800 11 2 711210382 1 1 1 2 7112 10990 11 2 7365 9214
S7comm 13 3 3 4 280 3 3 3 4 302 1 3 3 3 16 303 3 3 3 4 297
Modbus 11 1 1 4 314 11 1 10 328 1 1 1 1 16 337 11 1 10 324
Asia HTTP 1 1 1 2 711312285 11 2 1253411658 1 1 1 2 7113 11387 11 2 7194 11199
S7comm 13 3 3 4 292 3 3 3 16 33 1 3 3 3 4 329 3 3 3 4 284
Modbus 11 1 1 5 349 11 1 10 349 1 1 1 1 10 327 11 1 10 316
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