
Aegis: Automatic Enforcement of Security Policies in
Workflow-driven Web Applications∗

Luca Compagna
SAP Labs France

luca.compagna@sap.com

Daniel R. dos Santos
Fondazione Bruno Kessler

SAP Labs France
University of Trento

dossantos@fbk.eu
Serena Elisa Ponta

SAP Labs France
serena.ponta@sap.com

Silvio Ranise
Fondazione Bruno Kessler

ranise@fbk.eu

ABSTRACT
Organizations often expose business processes and services as
web applications. Improper enforcement of security policies
in these applications leads to business logic vulnerabilities
that are hard to find and may have dramatic security impli-
cations. Aegis is a tool to automatically synthesize run-time
monitors to enforce control-flow and data-flow integrity, as
well as authorization policies and constraints in web appli-
cations. The enforcement of these properties can mitigate
attacks, e.g., authorization bypass and workflow violations,
while allowing regulatory compliance in the form of, e.g.,
Separation of Duty. Aegis is capable of guaranteeing busi-
ness continuity while enforcing the security policies. We
evaluate Aegis on a set of real-world applications, assessing
the enforcement of policies, mitigation of vulnerabilities, and
performance overhead.

Keywords
Web Application; Policy Enforcement; Workflow Satisfiability

1. INTRODUCTION
Web applications are one of the preferred ways of expos-

ing business processes and services to users. Many web
applications implement workflows, i.e. there is a pre-defined
sequence of tasks that must be performed by users to reach a
goal [1]. If an application does not correctly enforce its work-
flows, attackers can exploit this vulnerability to subvert it.
In an e-commerce application, for instance, users must Select
products, Checkout, Enter shipping information, Pay, and
Confirm. If the application does not verify that user actions
follow this sequence, a user can, e.g., skip the payment step

∗This work has been partly supported by the EU under grant
317387 SECENTIS (FP7-PEOPLE-2012-ITN).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’17, March 22 - 24, 2017, Scottsdale, AZ, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4523-1/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3029806.3029813

and receive products without paying. Control-flow integrity,
i.e. the enforcement of an application’s workflow, has been
used in web applications to prevent workflow attacks and
others, e.g., forceful browsing and race conditions [3].

Data-flow integrity is also crucial and incorrect enforcement
can lead to vulnerabilities where, e.g., a user can change the
price of a product being purchased to pay less for it [20]. This
kind of vulnerability is even more prominent in multi-party
scenarios, where a user receives data from one party and
must relay it to another party. Several vulnerabilities have
been discovered in recent years due to improper enforcement
of data-flow integrity [20, 12, 14].

Besides control- and data-flow integrity, access control
is fundamental whenever users must access only data and
functionalities that they are authorized to by a given pol-
icy. Access control vulnerabilities are common and hard to
find [15]. Moreover, some web applications implement col-
laborative work, in which users work together to complete a
workflow. Examples are Enterprise Resource Planning (ERP)
software and e-health applications. In these applications, not
only it is important to enforce authorization policies, but it
may also be necessary to support authorization constraints,
which impose more restrictions on what users can do at
run-time. Examples of such constraints are Separation or
Binding of Duty (SoD or BoD), requiring two different users
(same user, respectively) to execute a pair of tasks. These
constraints can be used to avoid errors and frauds in applica-
tions that must follow compliance rules. Nonetheless, none
of the applications we experimented with provided support
for an easy to use, declarative specification of constraints.
Without declarative specifications and proper enforcement,
authorization constraints have to be implemented as appli-
cation code embedded into each task or translated to static
assignments in the authorization policy. Both solutions are
error-prone and can hardly scale.

Even with suitable specification and enforcement mech-
anisms, support for authorization policies and constraints
may lead to situations where an application workflow cannot
be completed because no user can execute an action without
violating them, thereby hindering business continuity. Deter-
mining if such a situation can be avoided, i.e. if a workflow
can be completed in the presence of a policy and constraints,
is known as the Workflow Satisfiability Problem (WSP) [18].
The WSP has received much attention in the workflow secu-
rity community, but, to the best of our knowledge, has never

http://dx.doi.org/10.1145/3029806.3029813


been considered in web applications. Transferring WSP solu-
tions to the web domain is not trivial, since these solutions
rely on workflow models and a workflow management system
to handle the control-flow of tasks and to provide an inter-
face for users to request task executions, elements which are
frequently not available for web applications.

In this paper, we present Aegis1, a tool to synthesize
run-time monitors for web applications that are capable of
automatically (i) enforcing security policies composed of com-
binations of control- and data-flow integrity, authorization
policies and constraints; and (ii) solving the run-time ver-
sion of the WSP by granting or denying requests of users
to perform tasks based on the satisfaction of the policy and
constraints and the possibility to terminate the current work-
flow instance. Aegis is based on [2], where a technique
to synthesize run-time monitors that solve the WSP for
security-sensitive workflows was presented. We extend [2] by
supporting data integrity. To synthesize a monitor, Aegis
first infers, using process mining [17], workflow models of the
target application from a set of HTTP traces representing
user actions. Traces must be manually edited to contain
only actions that should be controlled by the monitor. In-
ferred models are Petri nets [11] labeled with HTTP requests
representing tasks and annotated with data-flow properties
obtained by using a set of heuristics based on differential
analysis (as in, e.g., [20, 14]).

The main contributions of this paper are the description
and implementation of Aegis, as well as an empirical eval-
uation on a set of relevant applications. The rest of this
paper is organized as follows: Section 2 presents an overview
using motivating examples; Section 3 details the three steps
of the technique; Section 4 shows the implementation and
evaluation of our work; and Section 5 concludes the paper.

2. OVERVIEW
Aegis synthesizes run-time monitors for workflow-driven

web applications, i.e. applications implementing business
processes and customer services as workflows. Hereafter, web
application is used as an abbreviation for workflow-driven
web application, unless stated otherwise.

A monitor synthesized by Aegis can enforce three security
properties: authorization policies (P), defining which users
are entitled to perform which tasks; authorization constraints
(C), defining run-time restrictions on the execution of tasks,
e.g., SoD; and control- and data-flow integrity (I), specifying
the authorized control-flow paths that the application must
follow, as well as data invariants. Different web applications
have different enforcement needs, which requires the syn-
thesis of different configurations of monitors, depending on
which properties are switched on or off. We identify each
configuration as a tuple containing the active properties, e.g.,
〈P, C, I〉, 〈P, I〉, 〈C, I〉, 〈I〉. Control- and data-flow integrity
are in the same category because it is not realistic that an
application needs to enforce one and not the other.
Aegis takes as input sets of HTTP traces representing

user actions executed while interacting with a target web
application. It synthesizes an external monitor to be used by
a proxy sitting between users and the application. Each set
of input traces is produced by a user simulating real clients
completing a workflow as foreseen by the application (“good
traces”). The monitor only enforces those workflows given

1Aegis was the mythological shield carried by Athena.

Figure 1: Overview of the technique

in input, having no impact on the rest of the application.
Traces can be collected using test automation tools such as
Selenium2 or ZAP3 and must be manually edited to contain
only critical tasks. After trace collection, the whole technique
is fully automated.

Figure 1 shows an overview of Aegis. The top of the
Figure shows the entire approach, where rectangles represent
the three main steps, yellow notes are inputs, and ovals are
generated artifacts. The bottom of the Figure details the
internals of the Run-time Monitoring component. The three
main steps are the following.
1. Model Inference. The set of HTTP traces is auto-
matically stripped of all information except request and re-
sponse URLs, headers, and bodies; each request and response
is annotated with data-flow properties inferred by a set of
heuristics; traces are aggregated into a file called event log;
and a process mining tool takes the log as input to generate
a Petri net workflow model whose transitions are labeled by
the annotated requests.
2. Monitor Synthesis. Given a workflow model, the user
specifies the Authorization Constraints to be enforced (if
any) and whether an Authorization Policy will be provided
at run-time. Control- and data-flow integrity are obtained
automatically from the model and are always enforced. The
workflow model is presented in a convenient BPMN [19] nota-
tion, and the specification of constraints is done graphically.
A run-time monitor capable of enforcing the chosen proper-
ties is synthesized by translating the model to a symbolic
transition system (the translation among BPMN, Petri nets,
and transition systems is automatic [2]) and computing a
reachability graph that represents all possible valid executions
of the workflow by symbolic users, allowing us to support
different authorization policies at run-time. The Monitor is
a set of queries derived from the graph.
3. Run-time Monitoring. A reverse proxy is instantiated
with the synthesized monitor and a concrete authorization
policy (when provided by the user). It sits between users
and the application, filters requests and translates them to
the monitor. The monitor enforces the properties defined in
step 2, granting a request if the control-flow is respected, the
data-flow invariants hold (I), the user issuing the request is

2http://www.seleniumhq.org/
3https://goo.gl/XvxKd1

http://www.seleniumhq.org/
https://goo.gl/XvxKd1


Figure 2: Customer invoice process in BPMN (top)
and as a Petri net (bottom)

authorized by the policy (P), the authorization constraints
are not violated (C) and the current instance execution can
still terminate. The proxy, based on the response from the
monitor, may forward requests to the application or drop
them to prevent the violation of some property.

A single application may implement several workflows.
Steps 1 and 2 are performed for each workflow to be moni-
tored, generating one monitor per workflow. Step 3 uses all
the synthesized monitors and queries the correct one depend-
ing on the incoming request. Requests not related to any
monitored workflow go directly to the application, without
triggering a monitor query.

Below, we present two motivating examples that illustrate
the configurations 〈P, C, I〉, 〈C, I〉 (first example), and 〈I〉
(second example).

2.1 Example 1 - Enforcing constraints
Dolibarr4 is an open-source ERP web application that

implements a business process similar to the one shown at
the top of Figure 2 (in BPMN) to manage customer invoices.

The process contains 6 tasks (depicted by rounded boxes).
Tasks t1 to t4 must be performed in sequence (as indicated
by the solid arrows), while either t5, t6 or neither are per-
formed last (as indicated by the diamond-shaped gateway).
Dolibarr implements each of the tasks shown in Figure 2.
An authorization policy, control-flow, and possible data-flow
invariants are implemented in an ad-hoc way, whose cor-
rectness is hard to verify, which may lead to vulnerabilities.
The authorization policy provided by the application has a
granularity of permissions that does not match the user-task
assignment we support (there is no specific permission to,
e.g., re-open an invoice). Authorization constraints are not
supported. As a result, it is not trivial to prevent a malicious
user from creating and validating a customer invoice (SoD
between t1 and t2) or inserting and validating a payment
(SoD between t3 and t4), which would allow him to, e.g.,
close invoices with an incorrect payment.

A user who wants to securely deploy this application can
use Aegis to generate a 〈P, C, I〉 monitor to enforce control-
flow integrity, ensuring that all the steps in the customer
invoice process are performed in the correct order; an au-
thorization policy, ensuring that only authorized users can
execute each task; and the SoD constraints described above,
to avoid frauds. If the user prefers to leave authorization
enforcement to the application, a 〈C, I〉 monitor could be
generated to only add support for constraints and integrity.

4http://www.dolibarr.org/

To generate a monitor for the invoicing process, without
impacting other parts of the application, the user starts by
collecting traces simulating users performing the process.
Some HTTP traces representing these executions are (for
the sake of readability, we show only simplified URLs, but
headers and body are also part of the traces):

τ1 = {/invoice?action=create&value=10&prod=abc,
/invoice/validate?id=1, /invoice/pay/create?id=1&value=10,

/invoice/pay/validate?id=1},
τ2 = {/invoice?action=create&value=20&prod=def,

/invoice/validate?id=2, /invoice/pay/create?id=2&value=20,

/invoice/pay/validate?id=2, POST /invoice/send BODY id=2},
τ3 = {/invoice?action=create&value=30&prod=ghi&prod2=jkl,

/invoice/validate?id=3, /invoice/pay/create?id=3&value=30,

/invoice/pay/validate?id=3, /invoice/reopen?id=3}.

Each trace τi represents one possible execution of the
invoicing process and each request represents one task. The
first four requests in each trace are essentially the same, but
with different parameter values (e.g., id is 1 in τ1, 2 in τ2,
and 3 in τ3). They represent tasks t1, t2, t3, and t4. τ1
is an example of the branch where only the first four tasks
are executed, while t5 is executed after t4 in τ2, and t6 is
executed after t4 in τ3. The traces are automatically analyzed
to extract data-flow properties, annotated and aggregated
into an event log, sent to a process mining tool and the
resulting Petri net labeled with a task-to-URL map (Step 1).
Figure 2 shows, at the bottom, the Petri net obtained from
the process mining tool (ignore for a moment the dashed
lines). The tasks in the net are labeled as ti, with the
following task-to-URL map:

t1 : /invoice?action=create&value=<<I>>&prod=<<DC>>,

t2 : /invoice/validate?id=<<IID>>,

t3 : /invoice/pay/create?id=<<IID>>&value=<<I>>,

t4 : /invoice/pay/validate?id=<<IID>>,

t5 : POST /invoice/send BODY id=<<IID>>,

t6 : /invoice/reopen?id=<<IID>>

Data-flow properties are represented by annotations on
the URLs. The <<IID>> (instance identifier) annotation is
applied to the elements used to bind all the requests to the
same instance of a workflow, in this case the id parameter.
The <<I>> (invariant) annotation is applied to values that
should not change during the workflow, in this example the
value of the invoice in t1 should be the same as the value of
the payment in t2. The <<DC>> (“don’t care”) annotation is
applied to parameters that should be present in the request
to help identify it as a unique action, but whose values are
irrelevant. The parameter prod2, which is present in the
request of t1 only in τ3, is dropped in the task-to-URL map
because it is considered optional, i.e. a trace may represent
an invoice with one or more products, so only the first prod

parameter needs to be present.
The user then specifies the constraints that must be en-

forced, shown as dashed lines labeled by 6= (abbreviating a
SoD constraint) in Figure 2. The model is used to synthesize
a monitor (Step 2), which is composed of a set of SQL
queries encoding the fact that to perform a task t, all the
predecessor tasks (according to the control-flow of the model)
must have been executed, there must be an authorized user
u who has not performed any conflicting tasks, and there
must be other users capable of executing the remaining tasks
without violating the policy and the constraints.

http://www.dolibarr.org/


Figure 3: Checkout process in BPMN (top) and as
a Petri net (bottom)

At run-time (Step 3), in the 〈P, C, I〉 configuration,
a policy is specified as a task-user assignment, e.g.,
TA = {(u1, t1), (u1, t2), (u2, t2), (u3, t3), (u4, t3), (u4, t4),
(u5, t5), (u6, t6)}, where (u, t) ∈ TA means that u is autho-
rized to execute t. The assignment is stored in the database,
and a reverse proxy is instantiated with the synthesized
monitor. The proxy is capable of receiving a request such
as GET /invoice/validate?id=5 with the header Cookie:

sid=abcd1234 and identifying that it refers to task t2 of
instance 5 of the invoicing process being performed by user
u2 (whose cookie sid has been stored during login). It then
queries the monitor and, assuming that u1 has previously
executed t1 and t2 has not yet been executed, the SQL query
is satisfied and the request is granted. On the other hand, a
request can be blocked in several cases, such as if u3 tries to
execute t2 ((u3, t2) 6∈ TA), if u1 tries to execute t2 (SoD), if
any user tries to execute t3 before t2, or if any user issues a
request for t3 with a value different from the one sent for t1.

To solve the WSP, regardless of the execution history, any
request of u4 to execute t3 should be blocked. Granting
that request would mean that the only user authorized to
execute t4 has already executed t3, while both tasks are in
SoD. Therefore, any execution where u4 performs t3 would
either not terminate or terminate with the violation of some
constraint or policy. This tension between business com-
pliance and business continuity should be resolved and the
synthesized monitor avoids it by blocking requests that lead
to undesired situations.

2.2 Example 2 - Mitigating vulnerabilities
TomatoCart5 is a popular e-commerce application that

implements the checkout process depicted on the top of
Figure 3. It is composed of 5 tasks executed in sequence,
where t4 is a sub-process that can be implemented in different
ways, but must produce a data object representing a token
issued by a trusted third party, that is read in t5.

This is an example of a multi-party web application [14],
which implements the payment step by using a third-party
such as PayPal. An execution of this workflow, using PayPal
Express Checkout, involves three actors: a client C, a ser-
vice provider SP implementing TomatoCart and a trusted
third party TTP implementing the payment provider. The
execution starts with the client browsing the SP , selecting
some product (t1), requesting checkout (t2), and entering
shipping information (t3). The SP then contacts the TTP
and receives a token identifying the transaction (not shown
in the workflow). The user is redirected to the TTP with
the token (t4), completes the payment (again not shown in
the Figure), and is redirected back to the SP passing the
token, which is verified to complete the transaction (t5).

5http://www.tomatocart.com/

In version 1.1.7, TomatoCart had a vulnerability that
allowed users to replay a token in t5 of a new transaction
and shop for free [14]. This vulnerability was manually fixed
in a later release of the application, but Aegis could have
been used to mitigate it until a patch was available (or until
the patch could be applied, which is not always trivial). To
mitigate the replay vulnerability, we can generate a monitor
in the configuration 〈I〉, enforcing control-flow integrity and
the data invariant that the token received in t4 is the same
one sent in t5. An authorization policy and authorization
constraints are not specified since every user can execute the
steps in the checkout process and all steps are executed by
the same user. Details of the communication between SP and
TTP and between C and TTP are not shown in the workflow
because the monitor only needs to enforce that no user can
replace the token that has been sent to him/her. Although
Aegis ignores some messages, many vulnerabilities in multi-
party web applications can be mitigated this way [20].

To generate the monitor, we repeat the steps presented for
Example 1. Below, there are some traces of the execution of
the checkout process, again simplified for readability. Now
the traces involve three parties, thus each request must be
identified with its host.

τ1 = {shop.com/select, shop.com/checkout, shop.com/shipping,
shop.com/payment -> paypal.com/webscr?token=abcd1234,

shop.com/confirm?token=abcd1234},
τ2 = {shop.com/select, shop.com/checkout, shop.com/shipping,

shop.com/payment -> paypal.com/webscr?token=efgh5678,

shop.com/confirm?token=efgh5678}.

Figure 3 shows the Petri net obtained for the checkout
process, labeled directly with the URL of each task (where
-> represents a redirect). The invariant annotation <<I>> is
applied to the token received from PayPal, specifying that
its value must be the same in /payment and /confirm.

A monitor is synthesized as before, however with neither
authorization policy nor constraints. Workflow instances
can be identified by the user identifier, since each user has
only one checkout process at any given time. At run-time,
whenever a user tries to replay a token, the monitor blocks
this request because the token sent in t5 is different from the
one received in t4. If the user tries to bypass the monitor
by skipping step t4 and sending the token directly in t5, the
monitor blocks the request because of a control-flow violation.

3. DETAILS
An HTTP trace (or a web session) is a sequence S =
{(u1 : r1, s1), (u2 : r2, s2), ..., (un : rn, sn)} of pairs of web
requests ri issued by users ui (which may or may not be all
distinct) and responses si. Each web request or response
is defined as ri = (headers, body) and the information we
derive from a request is a tuple (method , url, P ), where
method ∈ {GET, POST}, url is the requested URL, and
P is a set of parameters of the form (k, v), which can be in
the URL (in GET requests), the body (in POST requests) or
in the headers (e.g., cookies or Location in redirects). Data
values passed as, e.g., JSON can be flattened to the same
representation. The parameters in P represent the data
values later annotated with data-flow properties.

A workflow W (T,U) is a set of tasks (t ∈ T ) endowed
by execution constraints involving users (u ∈ U). A
web application is composed of a set of workflows Ψ =
{W1(T1, U1), ...,Wn(Tn, Un)}. We take as input sets of web

http://www.tomatocart.com/


sessions WS i = {S1, S2, ..., Sn} and infer from each WS i a
workflow Wi(Ti, Ui), using an off-the-shelf process mining
algorithm, and a set of data property labels Li, using heuris-
tics. We also take as input, optionally, sets of authorization
constraints Ci. We then use a monitor synthesis procedure
MS(Wi, Li, Ci) that returns a monitor Mi. Mi is capable
of answering requests of the form “can user u perform task
t?”—encoded as can do(u, t)— with True iff the control-flow
in Wi and the data-flow in Li are respected, no authorization
constraint in Ci is violated, the requesting user u is autho-
rized by an authorization policy TA (specified at run-time),
and the workflow can be executed until the end.

At run-time, a reverse proxy receives an incoming re-
quest u : r and based on the information taken from it,
tries to translate it into a query of the form can do(u, t),
for u ∈ Ui and t ∈ Ti of workflow Wi(Ti, Ui), which can
be answered by Mi. Attacks on the application at the
level of web requests characterized as follows [10]: a re-
quest forgery is an extra request not foreseen in a work-
flow ({r1, r2, ..., rforged , ..., rn}); a workflow bypass is a miss-
ing request ({r1, r2, ..., ri−1, ri+1, ..., rn}); a workflow vio-
lation is an attempt to either repeat a unique request
({r1, r2, ..., ri, ..., ri, ..., rn}) or execute a request out of order
({r1, r2, ..., ri+1, ..., ri, ..., rn}); and authorization violations
happen when a request is issued by a user who is not entitled
to do so by the policy or when, for two tasks t1 and t2 in
SoD, a user who previously issued a request r1 to execute
t1, issues a new request r2 to execute t2. The monitor can
mitigate these attacks because they do not comply with the
expected workflow (naturally, they are only mitigated in the
parts of the application covered by the inferred model).

3.1 Step 1 - Model inference
The goal of Step 1 is not to produce an accurate model

of the whole application, but workflow models containing
only security-relevant actions. These are the requests related
to workflow tasks, whose execution should be controlled by
the monitor. The definition of what is relevant varies from
application to application, but besides the usual noise in
HTTP traces (e.g., loading images and other resources), any
request that leaves the application state unchanged should
be filtered out. Such requests are called navigation events,
as opposed to system-interaction events [13]. Not every
system-interaction event should be controlled by the monitor
(this should be decided by the user). However, discarding
navigation events is crucial to keep the inferred models to a
reasonable size and to eliminate imprecision due to variations
in the process when executed by different users. We assume
that this treatment of the input traces is done before Aegis
is invoked. It can be done manually, but there are automated
techniques to detect state changing requests [6, 13]. Such
techniques are usually embedded in crawlers to obtain a
model of the entire application. Applying just state-change
detection to traces of a single workflow may have sub-optimal
results (this evaluation is left to future work).

Since some URLs in an application can take different pa-
rameters and different values for these parameters, while
still representing the same action, and since we apply differ-
ential analysis to identify data-flow properties, we need at
least two different traces as input, each containing a possible
value for each of the parameters (including their presence
and absence). The input traces should also represent all the
possible execution paths of the process (control-flow). The

number of input traces required for a precise model depends
on the number of control-flow branches in the workflow be-
ing analyzed, as well as the diversity of the traces. Related
works use, e.g., four traces as input [20] or traces with spe-
cific requirements for each of the parties in the process [14].
At least two login traces with distinct users must also be
present, so that cookies defining the user session identifier
and parameters representing user names can be mined, to
map requests to concrete users at run-time. From the set of
HTTP traces, we extract three artifacts: a workflow model,
a task-to-URL map, and a set of data properties.
Workflow model and map. A workflow model is auto-
matically obtained from a process mining tool. There are
many well-known process mining algorithms and a simple
example is the α-algorithm [17]. It mines workflow nets
by recording all the events in a log and detecting relations
between them, such as sequence, exclusive, and parallel ex-
ecutions. In the traces used in Example 1, it is possible to
see that t1 always precedes t2 and t2 never precedes t1, so
the algorithm infers a causal dependency between them and
adds a place connecting transitions t1 and t2 in the output
net (place p1 in Figure 2). It is also possible to see that t4
precedes t5, t4 precedes t6, and t5 and t6 never happen in
the same trace, thus the algorithm creates a place after t4
that branches the execution (p4 in Figure 2). Since the input
traces contain only relevant URLs and each unique URL
becomes a transition after process mining, the task-to-URL
map is trivial to obtain.
Data-flow properties. We use five annotations, namely
constant, don’t care, invariant, instance identifier, and user
identifier, which are used for three goals. Constants and
don’t cares are used to restrict and generalize, respectively,
the input traces by fixing or hiding given values that are used
to match incoming requests at run-time. A user identifier
is used to detect the user issuing a request and an instance
identifier to detect the workflow instance that the request is
related to, since several instances of the same workflow may
be running at the same time and they may have different
execution histories. Invariants indicate values that should
not be modified during a workflow instance execution.

Data-flow properties are obtained by using differential
analysis, i.e. comparing the differences in the data values
between traces, as is done in related work (e.g., [20, 14]). For
each trace, the analysis compares the values of all parameters
in each request in relation to (i) the same parameter in other
requests of the same trace, (ii) the same parameter in other
traces, (iii) other parameters in the same trace, and (iv)
other parameter in other traces. Aegis does not apply
syntactic annotation (as, e.g., [14]) to identify the data type
of each parameter, and does not try to discover possible
values or intervals for data elements, because it does not
enforce particular values that were seen in the traces (except
for constants). Below, we describe the differential analysis
used to identify each kind of data-flow property.

Let WS be the set of traces τi used for analysis, each τi be
composed of requests rj and responses sj , and each request
or response have a set P of parameters (k, v). Considering
the same request rj in every trace τ ∈WS , if a parameter
(k, v) appears in only a strict subset τ ′ ⊂ τ of the traces, it is
considered optional and ignored, i.e. dropped from the URL
in the labeling function L. Constants are parameters that are
present in every trace τ ∈WS for the same URL of a request
rj and whose key k and value v never change. An example is



the parameter action=create, which is in t1 of traces τ1, τ2,
and τ3 in Example 1. Don’t cares are parameters that appear
in every trace τ ∈WS for the same URL of a request rj and
whose key k remains constant, but whose value v is different
in at least one of the requests. One example is prod=abc,
prod=def and prod=ghi in t1 of Example 1 annotated as
prod=<<DC>>. An instance identifier is a key k whose value
v is present in every request r of a trace τ , with different
v’s in every trace. In Example 1, the parameter id is an
instance identifier, since it has the value 1 in every request
of τ1, the value 2 in every request of τ2, and the value 3 in
every request of τ3. Notice that what must remain constant
is the value and not the key, so it is possible to have an
instance identifier called, e.g., id in one request and iid in
another request. A user identifier is a parameter that comes
from a response issued by the server, is stored in a cookie,
sent in every request of a trace and whose value changes in
every trace in WS . In Example 1, only URLs are shown
in the traces, but the cookie sid is sent with every request,
as can be seen towards the end of the example. Invariants
are values v that remain constant during a trace, change
between traces in WS and are not present in every request
of a trace (as opposed to instance identifiers). Two examples
are the value parameter in t1 and t3 in Example 1 and the
token in t4 and t5 of Example 2. Like instance identifiers,
invariant values should not change, but their keys might, so
that an invariant can be called, e.g., price in one request
and amount in another. There may be many invariants in
a workflow, so they are annotated as <<I_1>>, ..., <<I_n>>
for run-time enforcement.

Step 1 outputs a tuple (PN ,L), where PN is a Petri net
and L is a labeling function that associates to each transi-
tion in the net a URL annotated with the identified data
properties. Although (PN ,L) is obtained automatically, it
can be edited by a user before being sent for monitor synthe-
sis. Control-flow constraints can be changed by graphically
adding or removing places or transitions in the Petri net (or
tasks and gateways in BPMN), while data properties can be
modified by adding or removing annotations on the URLs.

3.2 Step 2 - Monitor synthesis
Step 2 takes as input the (PN ,L) from Step 1 and, op-

tionally, augments it with security properties given by the
user. As an example, the user can specify authorization
constraints SoD(tx, ty) indicating that tasks tx and ty must
be executed by different users. The user must also indicate
whether the monitor should enforce an authorization policy
to be specified later.
Security properties specification. All behaviors of the
web application that satisfy the specified security properties
are represented by the executions of a symbolic transition
system S = (V, Tr), where V is a set of state variables and
Tr is a set of transitions. In general, each workflow task cor-
responds to one transition. Each transition has a condition
and an update part. The conditions specify the constraints
that must be satisfied for a task to be executed (e.g., control-
flow, data-flow and authorization) and are expressed based
on the variables in V , therefore encoding the security prop-
erties. The update represents the effect of executing the task
(changing the values of the variables in V ). See [2] for more
details on the variables and transitions in S.
Monitor synthesis. S is fed to a symbolic model checker,
which computes a reachability graph RG representing all

possible executions of the workflow by a set of symbolic
users. A procedure to compute this graph, based on back-
ward reachability, is described in [2]. RG is a directed graph
whose edges are labeled by task-user pairs in which users are
symbolically represented by variables and whose nodes are
labeled by a symbolic representation (namely, a formula of
first-order logic) of the set of states from which it is possible
to reach a state in which the workflow successfully terminates.
A Datalog [4] program M is automatically derived from RG
by generating a clause of the form can do(u, t)← βn for each
node n in the graph (βn is the formula labeling n). M is
then translated to SQL [16]. The SQL program is capable of
answering—after possibly being instantiated with a concrete
authorization policy—user requests to execute tasks in a
workflow in such a way that the authorization and execution
constraints are not violated, the authorization policy is re-
spected and termination of the workflow is guaranteed, thus
enforcing the specified security properties and solving the
run-time WSP.

Step 2 outputs a tuple (M,L), where M is the monitor
generated from RG and L is the labeling function, which now
maps from transitions in S to annotated HTTP requests.

3.3 Step 3 - Run-time monitoring
Step 3 takes as input (M,L) and, if previously specified, an

authorization policy TA used to populate a database queried
by M , resulting in a concrete monitor.

A reverse proxy intercepts all incoming requests to the
application and decides, for each request, whether it is part
of a workflow or not. To do so, it tries to match the URL and
parameters in the request to annotated URLs and parameters
stored in L, taking into account the constant, ignored and
don’t care values. If there is no match, the proxy forwards the
request to the application, as it is not part of any workflow.
If there is a match, the proxy associates the request to a task
t of a workflow W (T, U) and checks the annotated URL for
<<IID>> and <<UID>> values, extracting the instance i and
the user u. The user identifier is a cookie value that must
be mapped to a user name in the policy. This is done by
capturing login actions, storing the cookies issued to each
user, and later retrieving the user names based on the cookie.

To enforce data invariants, when the proxy receives a
request for the first URL containing the annotation inv=<<I_

i>>, it stores the value of the parameter inv as vi . When any
subsequent task containing <<I_i>> is accessed, the value
of the incoming annotated parameter inc is compared to
the stored value (vi = inc). In these requests, the monitor
query can do(u, t) ← β is dynamically conjoined with the
data invariant condition, becoming can do(u, t)← β ∧ vi =
inc. Finally, the proxy issues a request can do(u, t) to the
monitor of instance i of W and acts based on its response
by either forwarding the request or dropping it.

4. EVALUATION
Aegis was implemented in Python 2.7. We capture exe-

cution traces using ZAP, extract data properties from them,
aggregate them into an XES log file and use ProM [17] to
mine the Petri net. Monitor synthesis is implemented as
in [2]. We instantiate mitmproxy6 with the generated moni-
tor script that intercepts requests and responses, performs
URL matching, queries a MySQL database—which stores

6https://mitmproxy.org/

https://mitmproxy.org/


the authorization policies—by using the synthesized queries,
and either forwards or drops the request. The proxy also
supports HTTPS connections.

4.1 Experimental setup
We tested Aegis on the ten open-source applications

shown in Table 1, synthesizing monitors in the configura-
tions 〈P, C, I〉 and 〈I〉. #1-4 are ERP platforms, #5-6 are
e-health applications and #7-10 are e-commerce applications.
Column Application contains the name of each application;
Language shows the language in which it was developed;
Params describes the predominant method used for parame-
ter passing (although an application can use several methods)
and Downloads reports the number of downloads (#1-6) or
public installations (#7-10).

The different languages show the versatility of the black-
box approach, which has to be tailored to support each
parameter passing method. The number of downloads and
installations is a measure of the popularity of the applications
and comes from official repositories (#2, 3, 5, and 6), data in
the web page of the project (#1 and 4), or related work [12]
(#7-10). The number of actual deployments for #1-6 is not
available as they are usually internal to an organization and
not indexed by search engines.

We pre-configured the applications using demo data and
captured four execution traces for each workflow and two
login traces for each application. To compare Aegis in
different ERP applications, we used workflows offered by all
of them: Purchase order (PO), Sales order (SO), Purchase
invoice (PI), and Sales invoice (SI). They are slightly different
in each application, varying from 4 to 6 tasks, usually with
a gateway defining 2 to 3 alternative execution branches.
Figure 4 shows at the top the patient visit workflow mined
from OpenEMR (where the lines labeled by = are BoD
constraints) and at the bottom the lab analysis workflow
mined from BikaLIMS. In these 6 applications, we added the
authorization constraints and specified policies with 10 users
assigned to each task, generating 〈P, C, I〉 monitors.

The workflows for e-commerce applications are similar to
the one shown in Figure 3. For these applications, we use
the 〈I〉 configuration, thus neither constraints nor autho-
rization policies were defined. Applications 7 and 8 have a
vulnerability allowing the replay of tokens (CVE-2012-4934).
Applications 9 and 10 allow an attacker to tamper with a
parameter that indicates who should receive the payment for
a transaction (CVE-2012-2991).

All applications were deployed as Docker containers and
the tests as Selenium scripts, which allows us to automat-
ically test the applications with and without monitoring.

Table 1: Applications used in the experiments
# Application Language Params Downloads

1 Odoo Python JSON 2M
2 Dolibarr PHP GET 850k
3 WebERP PHP GET 617k
4 ERPNext Python JSON 25k
5 OpenEMR PHP GET 382k
6 BikaLIMS Python REST 111k
7 OpenCart 1.5.3.1 PHP GET 9M
8 TomatoCart 1.1.7 PHP GET 119k
9 osCommerce 2.3.1 PHP GET 80k
10 AbanteCart 1.0.4 PHP GET 21k

Figure 4: Workflows from OpenEMR (top) and
BikaLIMS (bottom)

The experiments ran on a laptop with a 1.3GHz dual-core
processor and 8GB of RAM.

4.2 Results
The enforcement of security properties and mitigation

of vulnerabilities was successful in all applications; this was
confirmed by manual inspection. In applications 1-6, we tried
the attacks described in Section 3 (workflow bypass, workflow
violations, and authorization violations). The monitor was
able to block situations such as the same user executing an
entire workflow (SoD violation), and users trying to access
tasks that were not assigned to them. In applications 7-10,
we tried to exploit the vulnerabilities described above. In
applications 7-8, the attacks were unsuccessful because token
was detected as an invariant and automatically enforced. In
applications 9-10, the PayeeId parameter was detected as a
constant, since every trace in the input was related to the
same shop (constants are not enforced, only used to match
URLs). We then edited the inferred model by annotating
PayeeId with <<I>>, so that requests with any value of
PayeeId are controlled by the monitor, and used invariant
enforcement with a constant, instead of with the first received
value, to check that in every request containing PayeeId, its
value is equal to the one obtained in the traces.

Table 2 shows the performance of model inference, monitor
synthesis, and run-time enforcement. Column App. shows
the application under test (and the specific workflow tested
for ERP applications); Synth. shows the time to infer a model
from the captured traces and synthesize a monitor for each
workflow. Orig. reports the time between receiving a request
and sending a response with no monitor; Query reports the
time for the monitor to answer a query (ignoring the time to
invoke the script, translate an incoming request to a monitor
query, forward the request, etc); Aegis reports the time of
a response with the monitor script (the time taken by the
application, plus translation time, plus querying); and Overh.
shows the overhead incurred by the use of the monitor (the
difference between Aegis and Orig.). The time in column
Query varies with the size of a workflow and the number of
users and constraints, as reported in [2].

The overhead varied from 8ms to 84ms, with a median of
13.5ms, out of which less than 10ms in most cases is spent in
querying the monitor. The variability is due to the complexity
of the workflows and the time to translate a request. For
instance, Odoo and ERPNext have a large overhead because
of the time to process JSON requests. Monitor synthesis
is computationally much more expensive, but it is run only
once for each workflow and has been shown to be scalable [2].



Table 2: Monitoring overhead
App. Synth. Orig. Query Aegis Overh.

Odoo PO 21.3 s 112 ms 6 ms 132 ms 20 ms
Odoo SO 22.4 s 170 ms 7 ms 213 ms 43 ms
Odoo PI 14.3 s 174 ms 7 ms 213 ms 39 ms
Odoo SI 17.9 s 104 ms 7 ms 116 ms 12 ms

Dolibarr PO 14.2 s 93 ms 5 ms 103 ms 10 ms
Dolibarr SO 14.3 s 92 ms 4 ms 104 ms 12 ms
Dolibarr PI 13.2 s 89 ms 5 ms 97 ms 8 ms
Dolibarr SI 14.7 s 90 ms 5 ms 105 ms 15 ms
WebERP PO 20 s 51 ms 6 ms 59 ms 8 ms
WebERP SO 21.1 s 50 ms 5 ms 57 ms 7 ms
WebERP PI 18.3 s 30 ms 6 ms 37 ms 7 ms
WebERP SI 19.5 s 32 ms 4 ms 39 ms 7 ms
ERPNext PO 13.3 s 222 ms 7 ms 251 ms 29 ms
ERPNext SO 12.9 s 327 ms 14 ms 411 ms 84 ms
ERPNext PI 15.9 s 263 ms 10 ms 327 ms 64 ms
ERPNext SI 13.7 s 272 ms 13 ms 318 ms 46 ms
OpenEMR 19.1 s 95 ms 7 ms 112 ms 17 ms
BikaLIMS 31.2 s 306 ms 7 ms 326 ms 20 ms
OpenCart 19.1 s 65 ms 6 ms 77 ms 12 ms

TomatoCart 15.8 s 63 ms 4 ms 71 ms 8 ms
osCommerce 22.2 s 79 ms 7 ms 95 ms 16 ms
AbanteCart 19.8 s 117 ms 8 ms 127 ms 10 ms

5. CONCLUSION
We have described and evaluated Aegis, a tool to enforce

authorization policies and constraints, control- and data-flow
integrity, and ensure the satisfiability of web applications.
Our experiments show the practical viability of our approach
in enforcing the desired properties and mitigating related
vulnerabilities with a small performance overhead.
Related work. Many works studied authorization, control-
and data-flow integrity (separately) in web applications, and
mitigation of related vulnerabilities, e.g., [1, 5, 3]. These
approaches are white-box, whereas Aegis is black-box. Web
application workflow models have been used to find vulner-
abilities by identifying behavioral patterns from execution
traces [12], but Aegis is focused on enforcement, so the tech-
niques are complementary. Identification of data properties
has been used in [20, 12, 14] with different goals. The en-
forcement of authorization constraints for collaborative web
applications was studied in [8, 7], but there was no discussion
about workflow satisfiability, and the evaluation was limited
to prototypes. The closest related works are BLOCK [9] and
InteGuard [20]. Both use a reverse proxy, construct policies
using invariants from network traces, and rely on manual
identification of critical requests. InteGuard is tailored for
multi-party application integration, where most tasks are
not performed by humans and workflows must be executed
from beginning to end in one shot. Neither tool enforces
authorization policies nor constraints.
Future work. We intend to test Aegis in more real-world
applications and to explore monitor inlining by embedding
synthesized monitors into the applications.

6. REFERENCES
[1] D. Balzarotti, M. Cova, V. Felmetsger, and G. Vigna.

Multi-module vulnerability analysis of web-based
applications. In Proc. of CCS, 2007.

[2] C. Bertolissi, D. R. dos Santos, and S. Ranise.
Automated synthesis of run-time monitors to enforce

authorization policies in business processes. In Proc. of
ASIACCS, 2015.

[3] B. Braun, P. Gemein, H.P. Reiser, and J. Posegga.
Control-flow integrity in web applications. In Proc. of
ESSoS, 2013.

[4] S. Ceri, G. Gottlob, and L. Tanca. What You Always
Wanted to Know About Datalog (And Never Dared to
Ask). TKDE, 1(1):146–166, 1989.

[5] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna.
Swaddler: An approach for the anomaly-based
detection of state violations in web applications. In
Proc. of RAID, 2007.

[6] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna.
Enemy of the state: A state-aware black-box web
vulnerability scanner. In Proc. of USENIX Sec., 2012.

[7] P. Gaubatz, W. Hummer, U. Zdun, and M. Strembeck.
Enforcing entailment constraints in offline editing
scenarios for real-time collaborative web documents. In
Proc. of SAC, 2014.

[8] P. Gaubatz and U. Zdun. Supporting entailment
constraints in the context of collaborative web
applications. In Proc. of SAC, 2013.

[9] X. Li and Y. Xue. Block: a black-box approach for
detection of state violation attacks towards web
applications. In Proc. of ACSAC, 2011.

[10] X. Li, Y. Xue, and B. Malin. Detecting anomalous user
behaviors in workflow-driven web applications. In Proc.
of SRDS, 2012.

[11] T. Murata. Petri nets: properties, analysis and
applications. Proc. of the IEEE, 77(4):541–580, 1989.

[12] G. Pellegrino and D. Balzarotti. Toward black-box
detection of logic flaws in web applications. In Proc. of
NDSS, 2014.

[13] M. Schur, A. Roth, and A. Zeller. Mining workflow
models from web applications. TSE, 41(12):1184–1201,
2015.

[14] A. Sudhodanan, A. Armando, L. Compagna, and
R. Carbone. Attack patterns for black-box security
testing of multi-party web applications. In Proc. of
NDSS, 2016.

[15] F. Sun, L. Xu, and Z. Su. Static detection of access
control vulnerabilities in web applications. In Proc. of
USENIX Sec., 2011.

[16] G. Terracina, N. Leone, V. Lio, and C. Panetta.
Experimenting with recursive queries in database and
logic programming systems. Theory Pract. Log.
Program., 8(2):129–165, 2008.

[17] W.M.P. van der Aalst. Process Mining. Springer, 2011.

[18] Q. Wang and N. Li. Satisfiability and resiliency in
workflow authorization systems. TISSEC,
13(4):40:1–40:35, 2010.

[19] M. Weske. Business Process Management. Springer,
2007.

[20] L. Xing, Y. Chen, X. Wang, and S. Chen. Integuard:
Toward automatic protection of third-party web service
integrations. In Proc. of NDSS, 2013.


	Introduction
	Overview
	Example 1 - Enforcing constraints
	Example 2 - Mitigating vulnerabilities

	Details
	Step 1 - Model inference
	Step 2 - Monitor synthesis
	Step 3 - Run-time monitoring

	Evaluation
	Experimental setup
	Results

	Conclusion
	References

