
Similarity-based clustering for IoT device
classification

Guillaume Dupont1, Cristoffer Leite1, Daniel Ricardo dos Santos2, Elisa Costante2, Jerry den Hartog1, Sandro Etalle1
1Eindhoven University of Technology, 2Forescout Technologies

Abstract—Classifying devices connected to an enterprise net-
work is a fundamental security control that is nevertheless chal-
lenging due to the limitations of fingerprint-based classification
and black-box machine learning. In this paper, we address such
limitations by proposing a similarity-based clustering method.
We evaluate our solution and compare it to a state-of-the-art
fingerprint-based classification engine using data from 20,000
devices. The results show that we can successfully classify around
half of the unclassified devices with a high accuracy. We also
validate our approach with domain experts to demonstrate its
usability in producing new fingerprinting rules.

Index Terms—Internet of Things; Classification; Clustering.

I. INTRODUCTION

There is a growing number and variety of devices connect-
ing to enterprise networks due to trends such as BYOD and the
rapid deployment of IoT [1]. This situation makes it critical for
organizations to have an accurate inventory of these devices,
including information such as device type (e.g., computer, IP
camera, server), vendor, and operating system. This inventory
enables security controls with monitoring, vulnerability assess-
ment, and network access control and allows organizations to
detect attacks leveraging rogue devices, among others [2]–[4].

Creating and maintaining such an inventory requires the
ability to classify devices from their traffic on the network.
However, tools commonly used to identify connected devices
are not suited to the current enterprise environment. While
traditional device classification relies on manually-defined
fingerprints, it has limitations such as scalability and low
performance in terms of coverage/accuracy and granularity.
The first is the ability to classify/correctly classify a device,
and the second requires it to be specific enough to be useful.

Machine Learning (ML)-based alternatives have been pro-
posed to overcome these issues. However, most of these
approaches are “black-box”, i.e., the features and classification
algorithms used do not allow for straightforward interpretation
and actionability of the results. These solutions also require
a large amount of labelled data for training and use models
that require retraining when adding new types of devices.
Moreover, related works adopting these solutions suffer several
limitations, such as the narrow focus on IoT devices, thus
missing the enterprise-wide picture, and evaluating limited
datasets, both in terms of the number of devices and in the
variety of their types.

In this paper, we address the limitations of manual
fingerprint-based and black-box machine learning-based de-
vice classification by proposing a similarity-based cluster-

ing method. Our solution uses unsupervised learning with a
semantic-driven feature selection aiming to improve the cover-
age, accuracy, and granularity of an existing fingerprint-based
classification engine. Unsupervised algorithms overcome the
need for labelled data, which helps to keep up with the growth
of the number and diversity of devices.

The underlying idea is that devices with similar attributes
have a similar type, allowing us to cluster them together
and give them the same labels. Our solution can be broken
down into the following steps. First, we select semantically
meaningful attributes of devices as features. Second, we define
distance functions to evaluate the similarity between devices
based on these features. Third, we cluster devices which are
similar based on the notion of distance we defined. Finally, the
clusters are analyzed, resulting in a number of classification
suggestions that can be automatically applied or manually
reviewed by an expert.

We evaluate our solution and compare it to a state of the art
fingerprint-based classification engine using data from 20,000
devices. The results show that we can successfully classify
around half of devices that were left unclassified by the other
engines. We also validate our approach with domain experts to
demonstrate its effectiveness to solve industry-wide problems.

The rest of this paper is organized as follows. Section II dis-
cusses the background and related work. Section III states the
classification problem that we aim to solve, while Section IV
describes our methodology to solve this problem. Section V
shows the implementation and experimental results. Finally,
Section VI concludes the paper and discusses possibilities of
future work.

II. BACKGROUND AND MOTIVATION

Device classification (also known as “device fingerprint-
ing” [5]–[7]) works by applying a classification function on
data about networked devices [8]. This data can be collected
passively or actively. Passive techniques are non-intrusive, cap-
turing packets as they move on a network. Active techniques
interact with devices by sending them packets and observing
responses or change of behaviour.

Most commonly used classification approaches (e.g., nmap1,
which is active, or p0f2, which is passive) are rule-based,
comparing data collected from a device against a set of

1https://nmap.org/
2http://lcamtuf.coredump.cx/p0f3/

1

https://nmap.org/
http://lcamtuf.coredump.cx/p0f3/

fingerprints (or signatures) [9]–[11] that are manually designed.
However, fingerprint-based classification is limited in terms of
coverage, accuracy, and granularity [8].

Device classification is a well-researched problem, and
recently the focus has been on classifying IoT devices [8],
[12]–[25]. While many proposed approaches intend to address
the same problem, they diverge in ways that we explore below.

First, the granularity of classification ranges from simply
distinguishing IoT and non-IoT devices [26] to identifying the
specific model and software version of a device [12].

Second, data collection ranges from passive techniques
using network flows [14], [20], [24], packet headers [12], [16],
[27], application layer data [15], [19], [21], or a combination
of those methods [17], [22], [23], [25], to active techniques [1],
[13]. Some research also investigates how to enrich network
data with information found online [8].

A common limitation of these works is the scope of devices
considered, which usually consists in smart home IoT devices
and other consumer products. This setting does not reflect
the broader range of devices found in enterprises, such as
connected medical devices or operational technology equip-
ment. In addition, the evaluation of classification methods
demonstrated are often conducted in a lab setting with little or
no actual user operation, which does not accurately represent
“real-life” network deployments.

Recent solutions leverage machine learning to circumvent
the expensive process of designing fingerprints manually. The
majority of the work implements supervised learning algo-
rithms [14], [17], [19]–[21], [23], [24], [27], including deep
learning [16], [22]. These models not only require training
with a sufficient amount of data for the devices to be classified,
but they also require to be retrained each time a new device
is introduced. This constraint limits such approaches to scale
adequately as new devices are introduced. Additionally, these
algorithms function as a black box, providing little insights
into the rationale for classification. A network operator as
an end-user would have limited information about why a
certain device has been classified as such, and no means of
troubleshooting if the classification is inaccurate.

Techniques like clustering have been applied in the past
to classify network traffic [28], [29]. Such algorithms are
ideal to find similarity between entities and are well-suited
to device classification by considering the semantic of the
features and defining a proper similarity measure [30]. From
the discussion above and to the best of our knowledge, there no
other work that focuses on applying clustering with semantic-
driven feature selection to classify devices.

III. TERMINOLOGY

A device is a networked-enabled system fulfilling certain
functions and delivering value to an organization. Let us
assume a set of devices D and a set of types are given. A type
characterizes the main function of a device, such as printer, or
IP-camera. Device types are organized in a taxonomy, which
is a finite directed tree with nodes labelled with strings, as
shown in Figure 2. The label of the root is the empty string

and no two children of a node share the same label. We also
interpret the taxonomy as a partial order on the nodes, with
the root being the smallest element. The level of a node is its
depth in the tree, i.e. the length of the path to the root. We
denote a specific node by the sequence of labels from the root,
e.g., “/IT/Networking/Router” denotes a router. Let us assume
a taxonomy of devices types, which we call DT , is fixed.

Definition III.1. A device classification function c : D → DT
assigns a device type in DT to each device in D, which we
call the label of the device.

Given a classification function, the level of a device is the
level of its label. A device is called unlabelled if its level is
0 and labelled, otherwise. Depending on its level, a labelled
device can be qualified as weakly-labelled (the level is 1) or
well-labelled (the level is at least 2). In the taxonomy DT , a
level 0 label gives no information about a device, and a level
1 label gives very limited information. Hence devices with
a label of level 0 or 1 (i.e. unlabelled and weakly-labelled
devices) are referred together to as to-be-classified devices.

The fitness of a device classification function is measured in
terms of coverage (percentage of well-labelled devices), gran-
ularity (the levels of the devices) and accuracy (percentage of
correctly labelled devices compared to some ground truth).

Definition III.2. We define the device classification problem
as finding a device classification function that optimizes some
fitness metric(s).

IV. METHODOLOGY

We use similarity-based clustering to solve the device
classification problem stated in Section III. Figure 1 shows
an overview of the methodology.

Fig. 1. Overview of the methodology

First, we capture semantically meaningful features describ-
ing the devices we want to classify. Second, we compute the
distance between devices using distance metrics tailored for
each feature. Third, we use a clustering algorithm that groups
similar devices based on their distances. Fourth, we analyze
the quality of resulting clusters and assess their actionability.
Finally, we present the results to an operator. This white-box
approach allows using the suggestions in different ways to
improve the existing device classification function. Below, we
explain each step in detail.

A. Feature selection

A device d can be represented as a tuple of features
(f1, . . . , fn), where each feature fi in a domain Vi captures
an aspect of d. The device classification results are expressed
in term of features to user. They should have meaning and

2

Fig. 2. Extract of a taxonomy of device types

be directly understandable by user. We call them semantically
meaningful features.

B. Dissimilarity functions and distance

A dissimilarity function dissimi : Vi×Vi 7→ [0, 1] computes
the dissimilarity between two devices d and d′ with respect
to a single feature f . A dissimilarity score of 0 represents
the highest similarity between two feature values (i.e., they
are identical) and 1 the lowest. For each feature, we define a
dissimilarity function based on the feature’s domain Vi.

We then calculate the distance between two devices as fol-
lows. For a given feature vector (f1, . . . , fn) along with their
respective dissimilarity functions (dissim1, . . . , dissimn), we
define the distance D between two devices d = (f1, . . . , fn)
and d′ = (f ′

1, . . . , f
′
n) as the average dissimilarity per feature:

D(d, d′) =

n∑
i=1

(dissimi(fi, f
′
i))/n

with D ∈ [0, 1], where 0 means that two devices have exactly
the same values for every feature.

C. Clustering

We then input the distance D for a multiset of devices
into a clustering algorithm. Its goal is to aggregate similar
objects together while separating dissimilar ones in different
clusters [31]. We adopt density-based clustering [32]. Density-
based clustering searches for areas with a high density of ob-
jects separated by regions of lower density [31]. Additionally,
it can find clusters of different sizes and shapes while also
handling noise (i.e., objects that cannot be clustered) [33].

In our device classification context, density-based clustering
is well suited as it follows a non-parametric approach. It does
not require the specification of total clusters in advance nor
makes assumptions regarding their shape, unlike the paramet-
ric approaches. We leverage density-based clustering to find
clusters of similar devices comprising both well-classified and
to-be-classified, allowing us to classify the latter.

D. Cluster analysis

Using clustering algorithms requires a way to evaluate the
quality of the results [34]. This evaluation, known as cluster
validation, has been the topic of extensive research [34]–
[38]. Clustering quality can be measured by a Clustering
Validation Index (CVI) [38], such as the Silhouette Index or
Davies-Bouldin Index [39]. Most CVIs estimate the cohesion
(also known as “compactness” or “tightness”) and separation
of each cluster, then combine these values into a quality
measure [37]. However, these CVIs consider clustering as
an application-independent mathematical problem and provide
little information about the utility of the clustering for a given
use case [40].

For this reason, we also introduce a new cluster validation
index designed to assist in our classification problem. The first
component of this validation evaluates the quality of a cluster.
The second component measures the actionability of a cluster
from the point of view of a user.

1) Structural quality of a cluster: To evaluate the structural
quality of a cluster, we look at the dissimilarity between its
devices. We first look per feature how similar they are for that
feature and consider them good if they are similar on at least
some features. The feature dissimilarity AD i of a Cluster C is
computed as the average of the dissimilarity dissimi between
all devices in the cluster (with avg(∅) = 1):

AD i(C) = avg(dissimi(fi, f
′
i)|d, d′ inC|fi, f ′

i 6= NaN)

We consider the feature similar if it does not exceed a threshold
tdiss. We say a cluster is structurally bad if the count of similar
features (#{AD i(C) < tdiss|i = 1 . . . n}) does not reach a
minimum threshold tgood.

2) Cluster actionability: To evaluate the actionability of a
cluster we look at the specific use case; what can the user do
with the cluster. For our use case of classification we consider
the following suggested actions that may be assigned to a
cluster:

• Classify to-be-classified devices: suggests a label for to-
be-classified devices in the cluster.

3

• Increase from level n to level n+ x label: suggests an
improved level n + x label for level n (⩾ 2) devices in
the cluster.

• Fix misclassification: suggests the label of specific de-
vices in the cluster may be incorrect.

Taking the suggested action from an actionable cluster im-
proves the cluster, either with regards to coverage (first action),
granularity (second action) or accuracy (third action, assuming
the indicated devices were indeed classified incorrectly). While
we consider action ‘classify to-be-classified devices’ can be
taken automatically, the other two would be presented to an
operator. Of course we still need a procedure that actually
assigns these labels, and we discuss the one we use next.

If labelled devices in a cluster share the same parent at
Level-2, we consider this a good indication that this Level-2
label would also apply for to-be-classified in the same cluster.
Formally, we call a clusters level-2-coherent when (the cluster
has well-classified devices and) the level of the greatest lower
bound (GLB) of the labels of all well-classified devices in the
cluster is at least 2:

level(GLB({label(d)|d ∈ C ∧ level(d) ⩾ 2})) ⩾ 2

For instance, a cluster with only well-classified devices
labelled as “/Information Technology/Mobile/Smartphone” or
“/Information Technology/Mobile/Tablet” is level-2-coherent,
since these devices share the same Level-2 label, “/Information
Technology/Mobile”. If a cluster is level-2-coherent we assign
‘classify to-be-classified devices’ as action and suggest the
level-2 ancestor of the well-classified devices as the label for
to-be-classified devices.

When a cluster is level-2-coherent, we look at the number
of devices for each label in that cluster. We characterize as
main label the highest label that has at least t% devices of
the well-classified devices under it (with t > 50). If the main
label’s level is greater than 2 and if there are devices in the
cluster with a lower level label, we assign ‘increase from level
n to level n+x label’ as action and suggest this label for the
latter devices, thus increasing their granularity.

When a cluster is not level-2-coherent but does have a main
label of at least Level-2, we suggest ‘Fix misclassification’
action. The devices whose labels are not under the main label
are the ones suggested to be misclassified.

V. EXPERIMENTATION

This Section details the implementation of the methodology
outlined in Section IV, with explanations about the experimen-
tal setup and results obtained.

A. Implementation

We detail below the features and similarity functions chosen,
as well as the clustering algorithm and cluster validation.

Features and similarity functions. The features we used in
our implementation are presented in Table I, with references
motivating their use in device classification. Based on the value
types of the selected features (strings and sets of strings),

TABLE I
SELECTED FEATURES, INCLUDING THEIR SOURCE, EXAMPLE AFTER

PREPROCESSING, AND SIMILARITY FUNCTION

Source Features Example Function

DHCP

Class ’Printers’ Levenshtein
Options (53,61) Jaccard
Param.Request List (1,121,3) Jaccard
Vendor ’Cisco’ Levenshtein
Operating System Windows Vista/7 Levenshtein

HTTP Banner (Mozilla/4.0, Microsoft) Jaccard
Headers (Server Microsoft-IIS) Jaccard

MAC Vendor (24 bits) ’Hewlett Packard’ Levenshtein
OUI ’cc9891’ Levenshtein

Nmap

Banner (23/tcp telnet, 80/tcp http) Jaccard
OS (Windows 7, Windows) Jaccard
Function ’Windows’ Levenshtein
Open Ports (139/tcp, 445/tcp) Jaccard

p0f Fingerprint (Windows NT kernel 5.x) Jaccard

Other Group (Network, Non Corporate) Jaccard
Network Function ’Windows Machine’ Levenshtein

we choose two well-known similarity functions, namely the
Levenshtein Index [41] and the Jaccard Index [42].

The Levenshtein Index, also called edit distance, computes
the minimal number of insertions, deletions, and substitutions
to make two strings the same [41]. It allows to compare two
strings of arbitrary length, thus it is suited to measure the
distance between feature values of string type.

The Jaccard Index measures the similarity between two sets
A and B as the cardinality of the intersection divided by the

cardinality of the union of the sets, i.e. J(A,B) =
|A ∩B|
|A ∪B|

.

The Jaccard Index is well-suited for features whose values are
sets of strings. We implement a similarity function for those
features (see Table I) that first transforms the set of strings
into two sets of tokens and then computes the Jaccard Index.

For each feature, its similarity function is used to compute
a pair-wise similarity matrix as described in IV.

Clustering. We selected the Hierarchical Density-Based Spa-
tial Clustering of Applications with Noise (HDBSCAN) al-
gorithm [32], [43] for clustering. Like other density-based
clustering algorithms, HDBSCAN keeps parameter tuning to
a minimum, not requiring to specify a number of clusters
nor assuming certain cluster shapes, and it handles noise
(i.e,. outliers). HBSCAN stands out by its capacity of finding
clusters of varying densities and by being more robust to
parameter selection [44]. HDBSCAN is also suitable for this
use case because it does not require the distance between each
pair of points, only expecting a connected graph. It allows us to
use NaN values for uncomputed distances of missing features
as defined in the previous subsection.

We use the implementation of HDBSCAN available at [44],
which supports pre-computed distance matrices. This allows
us to feed the algorithm with our devices distances computed
with our distance metric (IV). We only have one parameter to
tune: the minimum number of devices that should be together
to be considered as a cluster. We set it to a value of 3. In
the context of device classification there is no requirement
regarding the size of a cluster. Keeping this parameter low

4

increases the chance for devices to be clustered with similar
ones, which could ultimately help with classification.

Cluster analysis and interpretation of results. We analyze
the clusters by implementing the cluster analysis presented
in SectionIV. The evaluation of the goodness of clusters is
done as follow: With the 16 features we selected, we define
a good cluster as one that has least 3 features (tgood = 3)
with an average dissimilarity below 0.2 (tdiss = 0.2). These
thresholds are chosen based on our empirical experimentation.

Regarding the heuristic-based analysis, we implement a
function that identifies the type of clusters as described in Sec-
tion IV. It analyzes the labels of the devices, and based on the
type of the cluster, it results in one or more suggested actions.
For example, let us consider a cluster containing 20 devices: 15
labelled as /Information Technology/Mobile/Smartphone, 3 as
/Information Technology/Mobile/ and 2 unlabelled (unknown).
The resulting suggested actions for that level-2-coherent clus-
ter are 1) Classify the two unlabelled devices and 2) Change
Level-2 to Level-3 label for the three Mobiles.

B. Experimental setup

Dataset. For our experiments, we used datasets containing data
up to 20,000 devices from a healthcare enterprise network.
The devices found on these networks comprise a wide variety
of types, ranging from traditional computers and servers, to
IoT devices such as IP cameras. On some networks, industry-
specific devices can also be found, such as patient monitors
and other connected medical devices in hospitals.

Within the network, we capture device data by passively
monitoring their communications with network monitoring
tools such as p0f and actively scan them with nmap and other
tools. This data is fed to Forescout’s existing classification
engine, which assigns for each device a unique ID and applies
a set of fingerprints against the data to assign a label to
that device. The classification engine has the limitations of
fingerprint-based systems discussed in Section II.

To create a dataset, we extract and store the devices and
respective data as a collection of key-value pairs in a JSON file.
Each device is represented as a tuple consisting of its unique
ID, its label (if found by the classification engine, otherwise
“Unknown”) and its values for the 16 features selected (see
Table I).

In the end the dataset comprises 15,760 well-classified and
4,240 to-be-classified devices.

Evaluation metrics. To evaluate the fitness of our approach,
we measured the coverage, granularity and accuracy of the
clustering results as follows:

• Coverage: Number of to-be-classified devices having a
suggestion of classification.

• Granularity: Number of level-2 devices with a classifi-
cation suggestion to level-3 or higher.

• Accuracy: Number of devices potentially misclassified.
In our evaluation, we consider the initial classification from

the fingerprint-based classification engine described above as

baseline for the coverage (i.e., how many to-be-classified de-
vices are in the dataset). It is non-trivial to obtain a comparable
baseline for the two other metrics.

C. Validation

Before running the main experiment, we performed a 20-
fold cross-validation to assess the solution’s effectiveness by
checking if the automatically assigned labels are correct. For
this test, we used a sample of 20,000 well-classified devices
with an accurate primary classification (i.e., ground truth).
Using a database of 4.4 million devices from more than
200 different companies operating in various industry sectors,
we observed that both in the overall database and in these
companies’ specific networks, there are around 21.2% of to-
be-classified devices. With that, we removed the label of
4,240 devices randomly selected from the sample to reproduce
the same distribution of to-be-classified devices expected in
a typical database. The tests resulted, on average, in 1387
clusters (1349 good clusters and 39 bad clusters) and 6,609
devices unclustered (i.e., noise points).

As shown in Figure 1, a Level-2 label in the taxonomy
represents the minimum information about the type of the
device (i.e., a computer, a mobile device, an ICS, etc) and
gives a good amount of details about the device. Correctly
suggesting a label up to at least Level-2 means that it achieved
a consistent label, referred to in this cross-validation as a
Consistent Level-2 Classification. In case that the suggestion
is also correct to its full extent (i.e. the highest level of the pri-
mary label), it means that it achieved a consistent classification
with a good granularity level; in this case, it will be called a
High-Granularity Classification. For example, suggesting the
label ‘IT/Computer’ to a device with the removed primary
label ‘IT/Computer/Workstation’ means a Consistent Level-
2 Classification, while suggesting ‘IT/Computer/Workstation’
means a High-Granularity Classification.

The 20-fold cross-validation resulted in an average of 2174
devices with a new suggested label out of the initial 4,240 to-
be-classified. By comparing the label suggested in the experi-
ments for the clustered devices with the primary classification
removed from them, the methodology achieved, on average,
99.5% of Consistent Level-2 Classification and 95.6% of
High-Granularity Classification during the tests. These results
indicate that the methodology classifies devices with reliable
labels and excellent precision, validating the following results.

D. Results

We execute our program with the dataset created and
analysed the results from the main experiment described on
Section V-B. Among the 20,000 devices, 12,595 devices are
grouped into 1310 different clusters, while the remaining
7405 devices are considered as noise points. From the 1310
clusters, 1,285 are actionable and suggestions are provided
which can help classifying a total of 1539 to-be-classified
devices (out of the initial 4,240). The amount of 1539 to-
be-classified devices candidate to classification can be broken
down into 802 unlabelled devices (out of 2,234 unlabelled)

5

and 737 level 1 devices (out of 2006). Moreover the output
of our experimentation suggests 36 level 2 devices (within 29
clusters) that can be improved with a level 3 classification,
and 533 devices (from 120 clusters) that could be potentially
misclassified.

The results can be used in two different use cases as men-
tioned in Section IV. In the case of automatic classification,
1539 to-be-classified devices (802 unlabelled and 737 level 1
devices) can be labelled automatically. In the case of manual
classification the end user is presented with the 249 clus-
ters and their respective classification suggestions mentioned
above. Assuming all the suggestions being validated by the
user, it results in a total of 2108 devices with an improved
classification.

VI. CONCLUSION

This paper addressed the limitations of device classifica-
tion based on traditional device fingerprinting and black-box
machine learning by proposing a semantic similarity-based
clustering method.

We evaluated our solution and compared it to the state-of-
the-art fingerprint-based classification using data from 20,000
devices. The results show that we can successfully classify
a good amount of the to-be-classified devices among these
with 99.5% consistency and 95.6% high granularity. Also, the
validation of our approach using real-world databases demon-
strated its effectiveness to solve industry-wide problems.

The results demonstrated that the method meets the expec-
tations. The proposed solution delivered consistent labels with
high granularity to unclassified devices automatically while
still allowing a specialist to perform manual verifications on
these labels. Thus, the method can reduce a good portion of the
work involved in manual and fingerprint-based classification.

On top of that, the method improves over traditional
black-box classification mechanisms by showing classification
suggestions to an operator. This white-box approach adds
actionability and increases the results’ reliability by combining
automatic classification with manual verification.

Future work.
As future work, we plan to assess the possibility of im-

proving the structural quality metrics to increase the number
of devices receiving a label suggestion while maintaining the
achieved consistency and granularity rates. We also intend
to analyse the applicability of this method on distributed
environments with privacy-sensitive information.

ACKNOWLEDGMENTS

The authors received support to develop this research from
the Project SeCoIIA (Secure Collaborative Intelligent Indus-
trial Assets).

REFERENCES

[1] P. Bajpai, A. K. Sood, and R. J. Enbody, “The art of mapping iot devices
in networks,” Network Security, vol. 2018, no. 4, pp. 8–15, 2018.

[2] A. Cui and S. J. Stolfo, “A quantitative analysis of the insecurity of
embedded network devices: results of a wide-area scan,” in Proceedings
of the 26th Annual Computer Security Applications Conference, 2010,
pp. 97–106.

[3] Office of Inspector General, “Cybersecurity management and oversight
at the jet propulsion laboratory,” https://oig.nasa.gov/docs/IG-19-022.pdf,
2019.

[4] Y. Mirsky, T. Mahler, I. Shelef, and Y. Elovici, “Ct-gan: Malicious
tampering of 3d medical imagery using deep learning,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019.

[5] F. Veysset, O. Courtay, O. Heen, I. Team et al., “New tool and tech-
nique for remote operating system fingerprinting,” Intranode Software
Technologies, vol. 4, 2002.

[6] M. Smart, G. R. Malan, and F. Jahanian, “Defeating tcp/ip stack
fingerprinting.” in Usenix Security Symposium, 2000.

[7] G. Taleck, “Ambiguity resolution via passive os fingerprinting,” in
International Workshop on Recent Advances in Intrusion Detection.
Springer, 2003, pp. 192–206.

[8] X. Feng, Q. Li, H. Wang, and L. Sun, “Acquisitional rule-based engine
for discovering internet-of-things devices,” in 27th USENIX Security
Symposium (USENIX Security 18). USENIX Association, Aug. 2018,
pp. 327–341.

[9] H. J. Abdelnur, R. State, and O. Festor, “Advanced network finger-
printing,” in Recent Advances in Intrusion Detection, R. Lippmann,
E. Kirda, and A. Trachtenberg, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 372–389.

[10] Q. Xu, R. Zheng, W. Saad, and Z. Han, “Device fingerprinting in wire-
less networks: Challenges and opportunities,” IEEE Communications
Surveys Tutorials, vol. 18, no. 1, pp. 94–104, 2016.

[11] D. Herrmann, K.-P. Fuchs, and H. Federrath, “Fingerprinting techniques
for target-oriented investigations in network forensics,” Sicherheit 2014–
Sicherheit, Schutz und Zuverlässigkeit, 2014.

[12] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for se-
curity enforcement in iot,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 2177–
2184.

[13] A. Sivanathan, H. H. Gharakheili, and V. Sivaraman, “Can we classify an
iot device using tcp port scan?” in 2018 IEEE International Conference
on Information and Automation for Sustainability (ICIAfS). IEEE, 2018,
pp. 1–4.

[14] A. Hsu, J. Tront, D. Raymond, G. Wang, and A. Butt, “Automatic iot
device classification using traffic behavioral characteristics,” in 2019
SoutheastCon. IEEE, 2019, pp. 1–7.

[15] P. R. Pêgo and L. Nunes, “Automatic discovery and classifications of
iot devices,” in 2017 12th Iberian Conference on Information Systems
and Technologies (CISTI). IEEE, 2017, pp. 1–10.

[16] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Z. Yang, “Automatic device
classification from network traffic streams of internet of things,” in 2018
IEEE 43rd Conference on Local Computer Networks (LCN). IEEE,
2018, pp. 1–9.

[17] M. R. Santos, R. M. Andrade, D. G. Gomes, and A. C. Callado, “An
efficient approach for device identification and traffic classification in
iot ecosystems,” in 2018 IEEE Symposium on Computers and Commu-
nications (ISCC). IEEE, 2018, pp. 00 304–00 309.

[18] J. N. Suárez and A. Salcedo, “Id3 and k-means based methodology for in-
ternet of things device classification,” in 2017 International Conference
on Mechatronics, Electronics and Automotive Engineering (ICMEAE).
IEEE, 2017, pp. 129–133.

[19] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer,
J. D. Guarnizo, and Y. Elovici, “Detection of unauthorized iot devices
using machine learning techniques,” arXiv preprint arXiv:1709.04647,
2017.

[20] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wije-
nayake, A. Vishwanath, and V. Sivaraman, “Characterizing and classify-
ing iot traffic in smart cities and campuses,” in 2017 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
2017, pp. 559–564.

[21] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying iot devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, 2018.

[22] K. Yang, Q. Li, and L. Sun, “Towards automatic fingerprinting of iot
devices in the cyberspace,” Computer Networks, vol. 148, pp. 318–327,
2019.

[23] V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia, and M. Gu-
rusamy, “Deft: A distributed iot fingerprinting technique,” IEEE Internet
of Things Journal, vol. 6, no. 1, pp. 940–952, 2018.

6

https://secoiia.eu/

[24] S. Marchal, M. Miettinen, T. D. Nguyen, A.-R. Sadeghi, and N. Asokan,
“Audi: Toward autonomous iot device-type identification using periodic
communication,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1402–1412, 2019.

[25] N. Ammar, L. Noirie, and S. Tixeuil, “Autonomous iot device identifi-
cation prototype,” in 2019 Network Traffic Measurement and Analysis
Conference (TMA). IEEE, 2019, pp. 195–196.

[26] J. Ortiz, C. Crawford, and F. Le, “Devicemien: network device behavior
modeling for identifying unknown iot devices,” in Proceedings of the
International Conference on Internet of Things Design and Implementa-
tion, 2019, pp. 106–117.

[27] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O.
Tippenhauer, and Y. Elovici, “Profiliot: a machine learning approach
for iot device identification based on network traffic analysis,” in
Proceedings of the symposium on applied computing. ACM, 2017,
pp. 506–509.

[28] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using
clustering algorithms,” in Proceedings of the 2006 SIGCOMM Workshop
on Mining Network Data, ser. MineNet 06. New York, NY, USA:
Association for Computing Machinery, 2006, pp. 281–286.

[29] A. Sivanathan, H. H. Gharakheili, and V. Sivaraman, “Detecting be-
havioral change of iot devices using clustering-based network traffic
modeling,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7295–
7309, Aug 2020.

[30] E. P. Xing, M. I. Jordan, S. J. Russell, and A. Y. Ng, “Distance
metric learning with application to clustering with side-information,” in
Advances in neural information processing systems, 2003, pp. 521–528.

[31] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, “Density-based clus-
tering,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 1, no. 3, pp. 231–240, 2011.

[32] R. J. Campello, D. Moulavi, and J. Sander, “Density-based clustering
based on hierarchical density estimates,” in Pacific-Asia conference on
knowledge discovery and data mining. Springer, 2013, pp. 160–172.

[33] Y. Zhu, K. M. Ting, and M. J. Carman, “Density-ratio based clustering
for discovering clusters with varying densities,” Pattern Recognition,
vol. 60, pp. 983–997, 2016.

[34] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation
techniques,” Journal of intelligent information systems, vol. 17, no. 2-3,
pp. 107–145, 2001.

[35] U. Maulik and S. Bandyopadhyay, “Performance evaluation of some
clustering algorithms and validity indices,” IEEE Transactions on pattern
analysis and machine intelligence, vol. 24, no. 12, pp. 1650–1654, 2002.

[36] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu, “Understanding of internal
clustering validation measures,” in 2010 IEEE International Conference
on Data Mining. IEEE, 2010, pp. 911–916.

[37] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. PéRez, and I. Perona,
“An extensive comparative study of cluster validity indices,” Pattern
Recognition, vol. 46, no. 1, pp. 243–256, 2013.

[38] J. Hämäläinen, S. Jauhiainen, and T. Kärkkäinen, “Comparison of
internal clustering validation indices for prototype-based clustering,”
Algorithms, vol. 10, no. 3, p. 105, 2017.

[39] S. Petrovic, “A comparison between the silhouette index and the davies-
bouldin index in labelling ids clusters,” in Proceedings of the 11th Nordic
Workshop of Secure IT Systems. Citeseer, 2006, pp. 53–64.

[40] U. Von Luxburg, R. C. Williamson, and I. Guyon, “Clustering: Science
or art?” in Proceedings of ICML Workshop on Unsupervised and
Transfer Learning, 2012, pp. 65–79.

[41] G. Navarro, “A guided tour to approximate string matching,” ACM
computing surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[42] Y. Jiang, G. Li, J. Feng, and W.-S. Li, “String similarity joins:
An experimental evaluation,” Proc. VLDB Endow., vol. 7, no. 8,
p. 625636, Apr. 2014. [Online]. Available: https://doi.org/10.14778/
2732296.2732299

[43] R. J. Campello, D. Moulavi, A. Zimek, and J. Sander, “Hierarchical
density estimates for data clustering, visualization, and outlier detection,”
ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 10,
no. 1, pp. 1–51, 2015.

[44] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density
based clustering,” The Journal of Open Source Software, vol. 2, no. 11,
p. 205, 2017.

7

https://doi.org/10.14778/2732296.2732299
https://doi.org/10.14778/2732296.2732299

	Introduction
	Background and Motivation
	Terminology
	Methodology
	Feature selection
	Dissimilarity functions and distance
	Clustering
	Cluster analysis
	Structural quality of a cluster
	Cluster actionability

	Experimentation
	Implementation
	Experimental setup
	Validation
	Results

	Conclusion
	References

