
Automated Synthesis of Run-time Monitors to Enforce
Authorization Policies in Business Processes∗

Clara Bertolissi
Fondazione Bruno Kessler

University of Marseille
clara.bertolissi@lif.univ-

mrs.fr

Daniel Ricardo dos
Santos

Fondazione Bruno Kessler
SAP Labs France

University of Trento
dossantos@fbk.eu

Silvio Ranise
Fondazione Bruno Kessler

ranise@fbk.eu

ABSTRACT
Run-time monitors are crucial to the development of
security-aware workflow management systems, which need
to mediate access to their resources by enforcing authoriza-
tion policies and constraints, such as Separation of Duty.
In this paper, we introduce a precise technique to synthe-
size run-time monitors capable of ensuring the successful
termination of workflows while enforcing authorization poli-
cies and constraints. An extensive experimental evaluation
shows the scalability of our technique on the important class
of hierarchically specified security-sensitive workflows with
several hundreds of tasks.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection;
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Keywords
Run-time Enforcement, Workflow Satisfiability

1. INTRODUCTION
It is common that workflow management systems support

the execution of business processes. A workflow specifies
a collection of tasks and the causal relationships between
them. The execution of tasks is initiated by humans or soft-
ware agents executing on their behalf. Security-related de-
pendencies are specified as additional constraints on the ex-
ecution of the various tasks. In an organization, a workflow
task is executed by a user who should be entitled to do so;
e.g., the teller of a bank may create a loan request whereas

∗This work was partly supported by the EU under grant
FP7-PEOPLE-SECENTIS and the RESTATE Programme,
co-funded by the European Union under the FP7 COFUND
Marie Curie Action—Grant agreement no. 267224.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’15, April 14–17, 2015, Singapore.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3245-3/15/04 $15.00.
http://dx.doi.org/10.1145/2714576.2714633.

only a manager may accept it. Additional authorization con-
straints are usually imposed on task execution, such as Sep-
aration of Duty (SoD) or Bound of Duty (BoD) whereby two
distinct users or the same user, respectively, must execute
two tasks. Below, following [2], we call “security-sensitive”
this kind of workflows.

The Workflow Satisfiability Problem (WSP) consists of
checking if there exists an assignment of users to tasks
such that a security-sensitive workflow successfully termi-
nates while satisfying all authorization constraints. Such a
problem has been studied in several papers; see, e.g., [27,
20]. The run-time version of the WSP consists of answer-
ing sequences of user requests at execution time and ensur-
ing successful termination together with the satisfaction of
authorization constraints. This problem has received less
attention and only an approximate solution is available [3,
4].

The main contribution of this paper is an automated
technique to synthesize run-time monitors capable of ensur-
ing the successful termination of workflows while enforcing
authorization policies and SoD/BoD constraints, thus solv-
ing the run-time version of the WSP. Changes in the autho-
rization policies can be accommodated without re-running
from scratch the approach. Section 2 illustrates the main
steps underlying the technique on a simple example. Sec-
tion 3 gives full details and states several theorems guaran-
teeing the correctness of the approach. Another contri-
bution of the paper is an extensive experimental evalua-
tion of the proposed technique on hierarchically structured
workflows, i.e. complex workflows that can be decomposed
in subflows. Section 4 describes a prototype implementation
of the technique and how the structure of hierarchic specifi-
cations can be exploited to make our approach scale to large
workflow systems containing hundreds of tasks. Section 4.1
discusses the performances of our technique on two work-
flow systems inspired by realistic use-cases while Section 4.2
studies its scalability on synthetic benchmarks inspired by
those in [12] containing up to 500 tasks. Our findings clearly
show the scalability of the proposed technique on hierarchic
workflows. Section 5 discusses related work and Section 6
concludes the paper by giving hints to future work.

2. A TRIP REQUEST EXAMPLE
We describe our approach to synthesize run-time moni-

tors for security-sensitive workflows on a trip request pro-
cess. The workflow is composed of five tasks—each one in-
dicated by a box labeled by Trip request (t1), Car rental

Figure 1: Workflow in extended BPM notation

(t2), Hotel booking (t3), Flight reservation (t4), and Trip
validation (t5)—whose execution is constrained as follows
(cf. solid arrows and diamonds labeled with +): t1 must be
executed first, then t2, t3 and t4 can be executed in any or-
der, and when all have been performed, t5 can be executed,
thereby terminating the workflow. Additionally, each task
is executed under the responsibility of a user (indicated by
the small icon inside the boxes corresponding to the vari-
ous tasks) who has the right to execute it according to some
access control policy—not shown in Figure 1—and the five
authorization constraints depicted as dashed lines labeled by
the symbol 6= for Separation of Duty (SoD). So, for exam-
ple, the authorization constraint connecting the boxes of t1
and t2 requires the user executing t2 to be distinct from the
one that has executed t1, i.e. the user who requests the trip
cannot also rent a car.

Our goal is to synthesize a run-time monitor, capable of
ensuring that all execution and authorization constraints are
satisfied. Our approach is organized in two phases: off-line
and on-line.

Off-line. We first construct a symbolic transition sys-
tem S whose executions correspond to those of the security-
sensitive workflow. Then, we use a symbolic model checker
to explore all possible terminating executions of the work-
flow which satisfy both the causality and the authorization
constraints. We assume the model checker to be able to
return a symbolic representation R of the set of all states,
called reachable, encountered during the exploration of the
terminating executions of S. We use particular classes of for-
mulae in first-order logic to be the symbolic representations
of S and R.

On-line. We derive a Datalog program M from the for-
mulae R, representing the set of states reachable in the ter-
minating executions of S and the policy P specifying which
user can perform which task. The Datalog program M de-
rived in this way is the monitor capable of guaranteeing that
any request of a user to execute a task is permitted by P ,
satisfies the authorization constraints (such as SoD), and the
workflow can terminate its execution.

We illustrate the two phases on the security-sensitive
workflow in Figure 1.

2.1 Off-line phase
First of all, we build the symbolic transition system S

in two steps: (i) we adopt the standard approach (see,
e.g., [24]) of using (extensions of) Petri nets [19] to formalize
the semantics of workflows and (ii) we adapt the well-known
translation of Petri nets to symbolic transition systems (see,
e.g., [21]) to the class of extended Petri nets used in this
paper.

Figure 2: Workflow as an extended Petri net

Figure 2 shows the extended Petri net that can be auto-
matically derived from the BPM notation of Figure 1. Tasks
are modeled as transitions or events (the boxes in the fig-
ure) whereas places (the circles in the figure) encode their
enabling conditions. At the beginning, there will be just one
token in place p0 which enables the execution of transition
t1. This corresponds to the execution constraint that task
t1 must be performed before all the others. The execution of
t1 removes the token in p0 and puts a token in p1, another
in p2, and yet another in p3; this enables the execution of
t2, t3, and t4. Indeed, this corresponds to the causality con-
straint that t2, t3, and t4 can be executed in any order after
t1 and before t5. In fact, the executions of t2, t3, and t4 re-
move the tokens in p1, p2, p3 and put a token in p4, p5, and
p6 which, in turn, enables the execution of t5. This removes
the token in p4, p5, p6 and put a token in p7 which enables
no more transitions. This corresponds to the fact that t5 is
the last task to be executed. The fact that there is at most
one token per place is an invariant of the Petri net. This
allows us to symbolically represent the net as follows: we
introduce a Boolean variable per place (named as the places
in Figure 2) together with a Boolean variable representing
the fact that a task has already been executed (denoted
by dt and if assigned to true implies that task t has been
executed). So, for instance, the enabling condition for the
execution constraint on task t1 can be expressed as p0∧¬dt1
meaning that the token is in place p0 and transition t1 has
not yet been executed. The effect of executing transition t1
is to assign F (alse) to p0 and T (rue) to p1, p2, p3, and dt1;
in symbols, we write p0, p1, p2, p3, dt1 := F, T, T, T, T . The
other transitions are modeled similarly.

Besides the constraints on the execution of tasks, Figure 2
shows also the same authorization constraints of Figure 1.
These are obtained by taking into consideration both the
access control policy P granting or denying users the right

Table 1: Workflow as symbolic transition system
event enabled action

CF Auth CF Auth

t1(u) p0∧¬dt1 at1(u) p0, p1, p2, p3, dt1
:= F, T, T, T, T

ht1(u)
:= T

t2(u) p1∧¬dt2 at2(u) ∧ ¬ ht3(u)
∧ ¬ ht1(u)

p1, p4, dt2
:= F, T, T

ht2(u)
:= T

t3(u) p2∧¬dt3 at3(u)∧¬ht2(u) p2, p5, dt3
:= F, T, T

ht3(u)
:= T

t4(u) p3∧¬dt4 at4(u)∧¬ht1(u) p3, p6, dt4
:= F, T, T

ht4(u)
:= T

t5(u) p4∧p5∧
p6∧¬dt5

at5(u) ∧ ¬ ht3(u)
∧ ¬ ht2(u)

p4, p5, p6, p7, dt5
:= F, F, F, T, T

ht5(u)
:= T

to execute tasks and the SoD constraints between pairs of
tasks. To formalize these, we introduce two functions at and
ht from users to Boolean, for each task t, which are such that
at(u) is true iff u has the right to execute t according to the
policy P and ht(u) is true iff u has executed task t. Notice
that at is a function that behaves as an abstract interface to
the policy P whereas ht is a function that evolves over time
and keeps track of which users have executed which tasks.
For instance, the enabling condition for the authorization
constraint on task t1 is simply at1(u), i.e. it is required that
the user u has the right to execute t1, and the effect of its
execution is to record that u has executed t1, i.e. ht1(u) :=
T (notice that this assignment leaves unchanged the value
returned by ht1 for any user u′ distinct from u). Notice
that it is useless to take into account the SoD constraints
between t1 and t2, t4 when executing t1 since t2 and t4
will always be executed afterwards. As another example,
let us consider the enabling condition for the authorization
constraint on t2: besides requiring that u has the right to
execute t2 (i.e. at2(u)), we also need to require the SoD
constraints with t1 and t3 (not that with t5 since this will
be executed afterwards), i.e. that u has executed neither
t1 (i.e. ¬ht1(u)) nor t3 (i.e. ¬ht3(u)). The authorization
constraints on the other tasks are modeled in a similar way.

Table 1 shows the formalization of all transitions in the
extended Petri net of Figure 2. The first column reports
the name of the transition together with the fact that it is
dependent on the user u taking the responsibility of its ex-
ecution. The second column shows the enabling condition
divided in two parts: CF, pertaining to the execution con-
straints, and Auth, to the authorization constraints. The
third and last column list the effects of the execution of the
transition again divided in two parts: CF, for the workflow,
and Auth, for the authorization.

The initial state of the security-sensitive workflow is de-
scribed by the initial formula

p0 ∧
∧

i=1,...,7

¬pi ∧
∧

i=1,...,5

¬dti ∧
∧

i=1,...,5

∀u.¬hti(u) (1)

saying that there is just one token in p0, no task has been ex-
ecuted, and indeed no user has yet executed any of the tasks,
whereas a state of a terminating execution of the workflow
by the goal or final formula

p7 ∧
∧

i=0,...,6

¬pi ∧
∧

i=1,...,5

dti (2)

saying that there is just one token in p7 and all the tasks
have been executed.

Formally, the way in which we specify the transition sys-
tems corresponding to security-sensitive workflows can be
seen as an extended version of the assertional framework
proposed in [22]. We emphasize that obtaining, from the
extended BPM notation of Figure 1, the symbolic represen-
tation S of the initial and goal formulae with that of the
transitions in Table 1 is a fully automated process.

Exploring the search space. After obtaining the sym-
bolic representation of the initial and goal states together
with the transitions of the security-sensitive workflow, we
invoke a symbolic model checker in order to compute the
symbolic representation R of the set of (reachable) states
visited while executing all possible sequences of transitions
leading from an initial to a goal state. A crucial assumption
of our approach is that the model checker is able to compute

0

1

t5(u1)

2

t2(u2)

3

t3(u2)

4

t4(u1)

5

t4(u2)

6

t2(u2)

7

t3(u2)

8

t3(u3)

9

t4(u2)

10

t4(u3)

11

t4(u2)

12

t4(u3)

13

t3(u3)

14

t3(u3)

15

t2(u3)

16

t4(u4)

17

t1(u3)

18

t1(u4)

19

t1(u1)

20

t1(u3)

21

t1(u4)

22

t1(u1)

23

t1(u4)

24

t1(u1)

25

t1(u3)

26

t1(u5)

Figure 3: Graph-like representation of the set of
reachable states for the workflow in Figure 1

R for any finite number of users. By doing this, the interface
functions at’s can be instantiated with any policy P , i.e. con-
taining any number of users. As a consequence, changes in
the authorization policy do not imply to re-run the off-line
phase. In summary, our goal is to compute a parametric—in
the number n of users—representation of the set of states
visited while executing all possible terminating sequences of
transitions. From now on, we write Rn to emphasize this
fact.

Although the computation of Rn seems to be a daunting
task, there exist techniques available in the literature about
parameterized model checking (see the seminal paper [1])
that allow us to do this. Among those available, we have
chosen the Model Checking Modulo Theories approach pro-
posed in [16] for it uses first-order formulae as the symbolic
representation of transition systems and the availability of
tools, such as mcmt [17], which are capable of returning the
set of reachable states as a first-order formula.

For instance, Figure 3 shows a graph-like representation of
the formula Rn for the security-sensitive workflow described
by the symbolic transition system derived from Figure 1.
Each node is associated to a first-order formula: node 0 (bot-
tom of the figure) is labeled by the goal formula (2), nodes
17–26 (top of the figure) are labeled by formulae describing
sets of states that have non-empty intersection with the set
of initial states characterized by the initial formula (1), all
other nodes (namely, those from 1 to 16) are labeled with
formulae describing sets of states that are visited by execut-
ing transitions (labeling the arcs of the graph) belonging to
a terminating sequence of executions of the workflow. For
instance, node 1 is labeled by the formula

¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p4 ∧ p5 ∧ p6 ∧
dt1 ∧ dt2 ∧ dt3 ∧ dt4 ∧ ¬dt5 ∧

(at5(u1) ∧ ¬ht2(u1) ∧ ¬ht3(u1))

describing the set of states from which it is possible to reach
a goal state when some user u1 takes the responsibility to

execute task t5. The first two lines in the formula above
require that there is a token in places p4, p5, p6 (thereby
enabling transition t5), tasks t1, t2, t3, t4 have been exe-
cuted, and t5 has not yet been performed. The last line
requires that user u1 has the right to execute t5 and that
he/she has performed neither t2 nor t3 (because of the SoD
constraints between t5 and t2 or t3). In general, let us con-

sider an arc ν
t(u)−→ ν′ in the graph of Figure 3: the formula

labeling node ν describes the set of states from which it is
possible to reach the set of states described by the formula
labeling node ν′ when user u executes task t. Thus, the
paths starting from one of the nodes 17–26 (labeled by for-
mulae representing states with non-empty intersection with
the set of initial states) and ending in node 0 (labeled by the
goal formula) describe all possible terminating executions of
the workflow in Figure 1 (although nodes 5, 7, 10 and 12
seem to be exceptions, this is not the case: explaining their
role requires a more precise description of how the graph
is built and will be discussed in the next section). For in-
stance, the sequence of blue nodes describes the terminating
sequence t1, t3, t4, t2, t5 of task executions by the users u3,
u3, u2, u2, and u1, respectively. It is easy to check that this
sequence satisfies both the execution and the authorization
constraints required by the workflow in BPM notation of
Figure 1. In fact, t1 is executed first, t5 is executed last,
and t2, t3, t4 are executed in between; there are three dis-
tinct users u1, u2, u3 that can execute the five tasks without
violating any of the SoD constraints. By considering all pos-
sible paths in the graph of Figure 3, it is easy to see that
there should be at least three distinct users to be able to
terminate the security-sensitive workflow in Figure 1. From
what we said above, the formula Rn representing the set of
states visited during terminating sequences of task execu-
tions of the security-sensitive workflow in Figure 1 can be
obtained by taking the disjunction of the formulae labeling
the nodes in the graph of Figure 3 except for the one labeling
node 0 since, by construction, no task is enabled in the set
of states represented by that formula. Let rν be the formula
labeling node ν, then

Rn :=
∨
ν∈N

rν (3)

where N is the set of nodes in the graph (in the case of
Figure 3, we have N = {1, ..., 26}).

2.2 On-line phase
Once mcmt has returned the first-order formula Rn de-

scribing the set of states visited during any terminating exe-
cutions for a (finite but unknown) number n of users, we
can derive a Datalog [10] program which constitutes the
run-time monitor of the security-sensitive workflow formal-
ized by the symbolic transition system used to compute Rn.
Then, we can add the specification of the interface functions
at1, ..., at5 for a given value of n.

We have chosen Datalog as the programming paradigm in
which to encode monitors for three main reasons. First, it is
well-known [18] that a wide variety of access control policies
can be easily expressed in Datalog. Second, Datalog per-
mits efficient computations: the class of Datalog programs
resulting from translating formulae Rn permits to answer
queries in LogSpace (see below for more details). Third, it is
possible to further translate the class of Datalog programs
we produce to SQL statements so that run-time monitors

can be easily implemented as database-backed applications.
In the rest of this section, we describe how it is possible to
derive Datalog programs from formulae describing the set of
reachable states computed by the model checker and then
how to add the definitions of the interface functions at1, ...,
at5.

From Rn to Datalog. Recall the form (3) ofRn. It is not
difficult to see that each rν can be seen as the conjunction of
a formula rCF

ν containing the Boolean functions p0, ..., p7 for
places and dt1, ..., dt5 keeping track of task execution with a
formula rAuth

ν of the form

at(u0) ∧ ρAuth
ν (u0, u1, ..., uk)

where u0 identifies the user taking the responsibility to ex-
ecute task t, ρAuth

ν is a formula containing the variables
u0, u1, ..., uk, the interface functions at1, ..., at5, the history
functions ht1, ..., ht5, and all disequalities between pairwise
distinct variables from u0, u1, ..., uk (indeed, if there are no
variables, there is no need to add such disequalities). For in-

stance, formula r1 labeling node 1 in Figure 3 is rCF
1 ∧rAuth

1

where

rCF
1 := ¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p4 ∧ p5 ∧ p6 ∧

dt1 ∧ dt2 ∧ dt3 ∧ dt4 ∧ ¬dt5
rAuth
1 := ρAuth

1 (u1)

ρAuth
ν (u1) := at5(u1) ∧ ¬ht2(u1) ∧ ¬ht3(u1)

with u0 renamed to u1.
In general, each rν in the expression (3) for the formula

Rn can be written as

rCF
ν ∧ at(u0) ∧ ρAuth

ν (u0, u1, ..., uk) (4)

and describes a set of states in which user u0 executes task
t while guaranteeing that the workflow will terminate since
ν is one of the nodes in the graph computed by the model
checker while generating all terminating sequences of tasks.
In other words, (4) implies that u0 can execute task t or,
equivalently written as a Datalog clause: can do(u0, t) ←
(4), where can do is a Boolean function returning true iff
a user (first argument) is entitled to execute a task (second
argument) while all execution and authorization constraints
are satisfied and the workflow can terminate. Notice that
can do(u0, t)← (4) is a Datalog clause. So, we generate the
following Datalog clauses

can do(u0, t)← rCF
ν ∧ at(u0) ∧ ρAuth

ν (u0, u1, ..., uk) (5)

for each ν ∈ N . In the following, let Dn be the Datalog
program composed of all the clauses of the form (5). For
instance, the Datalog clause corresponding to node 1 is

can do(u1, t5) ← ¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p4 ∧ p5 ∧ p6 ∧
dt1 ∧ dt2 ∧ dt3 ∧ dt4 ∧ ¬dt5 ∧
at5(u1) ∧ ¬ht2(u1) ∧ ¬ht3(u1) .

It is not difficult to show that can do(u, t) iff there exists
a disjunct of the form (4) in Rn for a given number n of
users. Finally, observe that clauses of the form (5) contain
negations but are non-recursive.

Specifying the policy P . We are left with the problem
of specifying the access control policy P for a given number
n of users. As already observed above, there should be at
least three distinct users in the system to be able to ter-
minate the execution of the workflow in Figure 1. So, to

illustrate, let U = {a, b, c} be the set of users and use the
RBAC model to express the policy. This means that we have
a set R = {r1, r2, r3} of roles which are indirections between
users and (permissions to execute) tasks. Let UA = {(a, r1),
(a, r2), (a, r3), (b, r2), (b, r3), (c, r2)} be the user-role assign-
ments and TA = {(r3, t1), (r2, t2), (r2, t3), (r1, t4), (r2, t5)}
be the role-task assignment. Then, a user u can execute
task t iff there exists a role r such that (u, r) ∈ UA and (r,
t) ∈ TA. This can be formalized by the following Datalog
clauses:

ua(a, r1) ua(a, r2) ua(a, r3) ua(b, r2) ua(b, r3) ua(c, r2)
pa(r3, t1) pa(r2, t2) pa(r2, t3) pa(r1, t4) pa(r2, t5)
at(u) ← ua(u, r) ∧ pa(r, t) for each t ∈ {t1, ..., t5}

and denoted by DP . By taking the union of the clauses of
Dn and DP , we build a Datalog program Mn=3 allowing us
to monitor the security-sensitive workflow of Figure 1. I.e.
Mn=3 is capable of answering queries of the form can do(u,
t) in such a way that all execution and authorization con-
straints are satisfied and the workflow execution terminates.
An example of a run of the monitor is in Table 2, where
each line represents a state of the system; columns CF and
Auth describe the values of the variables in that state (“To-
ken in” shows which places have a token and the various hti
hold the name of the user who executed task ti); can do(u, t)
represents user u requesting to execute task t and ‘Resp’ is
the corresponding response returned by the monitor (grant
or deny the request). The execution in the table shows two
denied requests, one in line 0 and one in line 2. In line 0,
user a requests to execute task t1 but this is not possible
since a is the only user authorized to execute t4, and if a
executes t1, he/she will not be allowed to execute t4 because
of the SoD constraint between t1 and t4 (see Figure 1). In
line 2, user b requests to execute task t2 but again this is
not possible since b has already executed task t1 and this
would violate the SoD constraint between t1 and t2. All the
other requests are granted, as they do not violate neither
execution nor authorization constraints.

So far, we have described the key ideas underlying our
technique while neglecting efficiency considerations related
to the enumeration of all possible terminating execution se-
quences of the security-sensitive workflow. If we want our
approach to scale up and handle real-world workflows, we
have to design suitable heuristics as discussed in Section 4.

Table 2: A run of the monitor program Mn=3 for the
security-sensitive workflow in Figure 1

CF Auth can do
Token in ht1 ht2 ht3 ht4 ht5 (u, t) Resp.

0 p0 - - - - - (a, t1) deny
1 p0 - - - - - (b, t1) grant
2 p1, p2, p3 b - - - - (b, t2) deny
3 p1, p2, p3 b - - - - (a, t2) grant
4 p4, p2, p3 b a - - - (c, t3) grant
5 p4, p5, p3 b a c - - (a, t4) grant
6 p4, p5, p6 b a c a - (b, t5) grant
7 p7 b a c a b - -

3. AUTOMATED SYNTHESIS OF RUN-
TIME MONITORS

Considering the specification of workflows as transition
systems presented in Section 2, we now describe how a sym-
bolic model checker can compute a reachability graph that
represents all terminating executions of the workflow (off-
line phase) and how this is then translated to a Datalog
program that implements the run-time monitor for the WSP
(on-line phase).

3.1 Off-line
As already observed in Section 2.1, it is standard to use

(extensions of) Petri nets to give a formal semantics to work-
flows written in BPM notation [24]. In turn, it is well-known
how to represent (extension of) Petri nets as state transition
systems (see, e.g., [21]), that are composed of a set of state
variables and a set of events, as proposed in [22]. A state of
the system is defined by the values of the variables. A pred-
icate (Boolean function) over the state variables implicitly
defines a set of states, i.e. the one containing the values of
the variables for which the predicate evaluates to true. A
state satisfies a predicate iff it belongs to the set of states
implicitly defined by the predicate. An event has an enabling
condition, which is a predicate on the state variables, and
an action, which updates the state variables. When the en-
abling condition of an event evaluates to true in a given state
s, we say that the event is enabled at s. Executing an event
enabled at state s results in a new state s′ obtained by ap-
plying the update of the event to the values of the variables

in s. A behavior is a sequence of the form s0
e0→ s1

e1→ · · ·
where si is a state, ei is an event, and state si+1 is obtained
by executing event ei in state si, for i = 0, 1, We say
that a state sn is reachable from a state s0 iff there exists a

behavior s0
e0→ s1

e1→ · · · sn−1
en−1−→ sn.

For the class of security-sensitive workflows considered in
this paper, the set V of state variables is the union of a set
VCF and a set VAuth where the former contains a Boolean
variable pi for each place in the Petri net (for i = 0, 1, ...) and
a Boolean variable dt for each transition t in the Petri net,
whereas the latter contains two function variables at and ht
mapping the set U of users to Booleans for each transition
t in the net. Intuitively, pi is true iff there is a token in the
corresponding place, dt is true iff task t has been executed,
at(u) is true iff user u has the right to execute task t, and
ht(u) is true iff user u has executed task t. The enabling con-
dition and the action of an event t are of the following forms:
enabledCF ∧ enabledAuth and actCF ||actAuth, respectively,
where enabledCF is a predicate over VCF, enabledAuth is a
predicate over VAuth, actCF (actAuth, resp.) is the parallel
(||) updates of (some of) the variables in VCF (VAuth, resp.),
which are written as x1, ..., xk := v1, ..., vk for xi a state vari-
able and vi is the value to which xi should be updated to.
An update of a function variable f from users to Booleans is
written as f(u) := b where u is a user, b is a Boolean value,
and after the update the function is identical to the previous
one except at u for which the value b is returned. An event is
a tuple (t(u), enabledCF∧enabledAuth, actCF ||actAuth) writ-
ten as

t(u) : enabledCF ∧ enabledAuth → actCF ||actAuth (6)

where t is the name of the event (taken from a finite set)
and u is a user. Notice that an event is parametric with

respect to a user; thus, (6) specifies a collection of events,
one for every u in the set U of users. A security-sensitive
(state) transition system over the finite set U of users is
a tuple (VCF ∪ VAuth,Tr) where U is a finite set of users,
VCF ∪ VAuth is the set of state variables as described above,
and Tr is the set of events obtained by considering all users
in U .

Let U be an unbounded set of users and S = (VCF ∪
VAuth,Tr) be a security-sensitive workflow over a finite set
U ⊆ U , I and F be two predicates over VCF ∪ VAuth and
VCF, respectively, characterizing the set of initial and final
states. (Intuitively, F describes the set of states in which
the security-sensitive workflow terminates: to express this,
the variables in VCF are sufficient.) The goal of the off-
line phase is to compute the set B(S, I, F) of all behaviors

s0
e0→ s1

e1→ · · · sn−1
en−1−→ sn such that s0 is an initial state

(i.e. satisfies I) and sn is a final state (i.e. satisfies F), for
every finite sub-set U of users in U .

Symbolic behaviors. We solve the problem of enumer-
ating all possible behaviors of a security-sensitive workflow
S = (VCF ∪ VAuth,Tr) for every sub-set U of users in U
by using a symbolic representation for S and U . We use
first-order logic formulae [15] to represent sets of states. A
state formula is a first-order formula containing (at most)
the state variables in VCF ∪ VAuth ∪ VUser as free variables
where VUser is a set of variables taking values over the set
U of users. A state formula P evaluates to true (in sym-
bols, s, v |= P) or false (in symbols, s, v 6|= P) in a state
s of the system and for an assignment v of the user vari-
ables (i.e. a mapping from VUser to U): for each variable x
in VCF ∪ VAuth ∪ VUser that appears free in P , replace x by
its value in s or v and then evaluate the resulting formula.
In other words, state formulae define predicates or, equiva-
lently, sets of states. Examples of state formulae are (1) and
(2) describing the sets of initial and final states, respectively,
of the security-sensitive workflow in Figure 2. A symbolic
event is a tuple of the form (6) where, this time, u is a first-
order variable in VUser, enabledCF is a state formula over
VCF, and enabledAuth is a state formula over VAuth ∪VUser,
actCF is as before, and actAuth is of the form f(u) := b
where b is a Boolean value and u is the same variable in the
label t(u). A symbolic security-sensitive transition system is
a tuple (VCF∪VAuth∪Vuser,Ev) where VCF∪VAuth is the set
of state variables, VUser is the set of user variables, and Ev is
a finite set of symbolic events. The semantics of a symbolic
security-sensitive transition system (VCF∪VAuth∪VUser,Ev)
is axiomatically defined by using the notion of weakest lib-
eral precondition (wlp) [14]:

wlp(Ev , P) :=
∨

(t(u):en→act)∈Ev

(en ∧ P [act]) (7)

where P [act] denotes the formula obtained from P by sub-
stituting the state variable v with the value b when the as-
signment v := b is in actCF and substituting v(x) with ei-
ther v(x) ∨ x = u when v(x) := true is in actAuth or with
v(x) ∧ x 6= u when v(x) := false is in actAuth for x in
VUser and act := actCF ∧ actAuth. When Ev is a singleton
containing a single symbolic event ev , we write wlp(ev , P)
instead of wlp({ev}, P). Notice that wlp(Ev , P) is equivalent
to
∨

ev∈Ev wlp(ev , P). To make expressions more compact,
we also write wlp(t(u), P) instead of wlp(t(u) : en → act , P).

To illustrate, we compute wlp(t5(u), (2)) where the sym-
bolic event t5(u) is defined in Table 1 by using (7):(
p4 ∧ p5 ∧ p6 ∧ ¬dt5∧
at5(u) ∧ ¬ht3(u) ∧ ¬ht2(u)

)
∧ (

∧
i=0,...,3

¬pi ∧
∧

i=0,...,4

dti)

which is equivalent to

(
∧

i=0,...,3

pi ∧ ¬p4 ∧ ¬p5 ∧ ¬p6 ∧
∧

i=1,...,4

dti ∧ ¬dt5) ∧

at5(u1) ∧ ¬ht3(u1) ∧ ¬ht2(u1))

and it identifies those states in which there is a token in
places p4, p5, and p6, task t5 has not yet been executed
whereas tasks t1, ..., t4 have been executed, user u1 has the
right to execute t5 and has executed neither t2 nor t3. This
is exactly the formula labeling node 1 in Figure 3.

A symbolic behavior is a sequence of the form P0
e0−→

P1
e1−→ · · ·

en−1−→ Pn where Pi is a state formula and ei is
a symbolic event such that (a) P0 ∧ I is satisfiable, (b) Pi
is logically equivalent to wlp(ei, Pi+1) for i = 0, ..., n − 1,
and (c) Pn is F for I and F formulae characterizing the
initial and final states, respectively. The crucial advantage
of symbolic events is the use of variables to represent users
instead of enumerating them. To illustrate, consider a sim-
ple security-sensitive workflow with just two tasks t1, t2 such
that t1 should be executed before t2 and there is a SoD con-
straint between them. If the cardinality of the set U of users
is n, then the cardinality of the set of all possible behaviors
is n2−n. By using symbolic events, we can represent all such

behaviors by a single symbolic behavior P0
t1(u1)−→ P1

t2(u2)−→ P2

with the proviso that u1 6= u2 where u1, u2 are vari-
ables. Before stating formally this result, we need to in-
troduce the notion of security-sensitive transition system
T = (VCF ∪ VAuth,EvT) associated to a symbolic security-
sensitive transition system S = (VCF ∪ VAuth ∪ VUser,EvS)
and a finite set U ⊆ U of users: if the symbolic event
t(ui) : enS → actS is in EvS , then EvT contains an event
t(ui) : en → act where u is a user in U , en is the predicate
interpreting the formula obtained from enS by substituting
the variable ui with ui and all other user variables with users
in U (in all possible ways), and act is obtained from actS
by substituting ui with ui.

Theorem 3.1. Let S = (VCF ∪ VAuth ∪ VUser,EvS) be
a symbolic security-sensitive transition system and T =
(VCF∪VAuth,EvT) be the associated security-sensitive tran-

sition system for the set U ⊆ U of users. If s0
t0(u0)→ s1

t1(u1)→
· · · sn−1

tn−1(un−1)−→ sn is a behavior of T for u0, ..., un−1 in

U , then there exists a symbolic behavior P0
t0(u0)−→ P1

t1(u1)−→
· · ·

tn−1(un−1)
−→ Pn such that si, vi |= Pi with vi(ui) = ui for

i = 0, ..., n− 1 and sn, vn−1 |= Pn.

This result tells us that a symbolic behavior is an adequate
(and hopefully compact) representation of a set of behav-
iors. The proof is by a standard induction on the length of
the behaviors and exploits the fact that the enforcement of
authorization constraints depends only on two aspects: the
identity of users (via the state variables at’s modeling the
interface to the concrete authorization policy establishing if
a user has the right to execute a task) and the history of
the computation (via the state variables ht’s keeping track

of who has executed which tasks so that SoD and BoD con-
straints can be guaranteed to hold).

Computation of symbolic behaviors. Algorithm 1
computes the set of all possible symbolic behaviors of a sym-
bolic security-sensitive workflow. It takes as input the sym-
bolic security-sensitive workflow S together with the state
formula F defining the set of final states and returns a la-
beled graph RG, called reachability graph, whose set of la-
beled paths is the set of all symbolic behaviors of S ending
with F . The procedure incrementally builds the reachabil-

Algorithm 1 Building a symbolic reachability graph

Input: S = (VCF ∪ VAuth ∪ VUser,EvS) and F
Output: RG = (N,λ,E)
1: i← new(); N ← {i}; E ← ∅; λ[i]← F ; TBV ← {i};
2: while TBV 6= ∅ do
3: if subsumed(i,N ,N ′) then
4: connect(N ′,i); TBV ← TBV − {i};
5: end if
6: for all ev ∈ EvS do
7: P ← wlp(ev , λ[i]);
8: if P is satisfiable then
9: j ← new(); N ← N∪{j}; E ← E∪{(i, ev , j)};

10: λ[j]← P ; TBV ← TBV ∪ {j};
11: end if
12: end for
13: i← pickOne(TBV); TBV ← TBV − {i};
14: end while
15: return (N,λ,E);

ity graph RG by updating the set N of nodes, the set E
of edges, and the labeling function λ from N to state for-
mulae. Initially (line 1), a new node i is created (by in-
voking the auxiliary function new, which returns a “fresh”
node—i.e. distinct from any other node already in N—at
each invocation), N is assigned to the singleton containing
node i, which is also labeled (via λ) by the final formula
F . The algorithm also maintains the set TBV of nodes
to be visited, which is made equal to N . Then, the main
loop (lines 2–14) is entered by checking if there are some
nodes to be visited (line 2). At each iteration, it is first
(line 3) checked whether the set of states identified by the
wlp of the formula λ[i] with respect to the set EvS of sym-
bolic events is included in the union of the sets of states
that have been already generated. This is done by invoking
subsumed(i,N ,N ′) which returns true iff, for each symbolic
event ev ∈ EvS , there exists a sub-set N ′ of N − {i} and
wlp(ev , λ[i]) implies the formula

∨
j∈N′ λ[j] (notice that the

third argument N ′ is passed by reference). If this is the
case, we can avoid to add a new node ν to N labeled by
wlp(ev , λ[i]) as the symbolic behaviors arriving in ν have al-
ready been generated when visiting the nodes in N ′. Thus,
we can delete node i from TBV , add a new node j labeled
by wlp(ev , λ[i]) together with an edge from j to i labeled
by ev and—by invoking the auxiliary function connect—
duplicate the initial part of each path passing through a
node n′ in N ′ by replacing n′ with j provided that the newly
created path is a symbolic behavior of the symbolic transi-
tion system. To illustrate, consider node 7 in Figure 3 (col-
ored in red): wlp(ti(u), λ[7]) is unsatisfiable for i = 1, 3, 4, 5
(and can thus be ignored) whereas wlp(t2(u3), λ[7]) is satisfi-
able and implies λ[13]; this is checked by invoking subsumed

with N ′ = {13}. Thus, we create a new node (say) 29,
with λ[29] equal to wlp(t2(u3), λ[7]), draw an edge from
29 to 7 with label t2(u3), duplicate the initial parts of the

paths passing through node 13 (namely λ[17]
t1(u3)−→ λ[13] and

λ[18]
t1(u4)−→ λ[13]) while replacing 13 with 29 (thus obtaining

λ[17]
t1(u3)−→ λ[29] and λ[18]

t1(u4)−→ λ[29]), and then check that
the newly created paths, namely

λ[17]
t1(u3)−→ λ[29]

t2(u3)−→ λ[7]
t3(u2)−→ λ[4]

t4(u1)−→ λ[4]
t5(u1)−→ λ[0] and

λ[18]
t1(u4)−→ λ[29]

t2(u3)−→ λ[7]
t3(u2)−→ λ[4]

t4(u1)−→ λ[4]
t5(u1)−→ λ[0] ,

are symbolic behaviors. It turns out that only the latter is
so, since the former violates the SoD constraint between t1

and t2. We thus add only the path λ[18]
t1(u4)−→ λ[29]

t2(u3)−→
λ[7] to the graph in Figure 3. Nodes 5, 10, and 12 are
handled similarly. These extensions to the graph in Figure 3
are omitted to keep it readable.

If node i is not subsumed by those in N (i.e. sub-

sumed(i,N) returns false), we compute the wlp with respect
to all symbolic events (inner loop 6–11). I.e., for each ev
in EvS , we compute wlp(ev , λ[i]) labeling the node i being
visited (line 6) and verify if it defines a set of states which
is non-empty, by checking the satisfiability of the resulting
formula (line 7). If this is the case, we add a fresh node
j, labeled by the wlp just computed, to N , an edge from
i to j labeled by the name ev of the symbolic event ev ,
and add the newly created node j to the set TBV (lines 8
and 9). For instance, when computing the wlp of the for-
mula labeling node 0 in Figure 3, we found out that only
the symbolic event named t5(u1) generates a formula de-
noting a non-empty set of states and thus we added node 1
labeled by such a formula and an edge from 1 to 0 labeled by
t5(u1). After exiting the inner loop, if the set TBV of nodes
to be visited is non-empty, we consider another node to be
visited by invoking the auxiliary function pickOne(TBV)
which non-deterministically selects an element from TBV
(when this is empty, pickOne returns a distinguished ele-
ment), which is then deleted, and we start the main loop
again.

Theorem 3.2. Let I be the initial state formula. If Al-
gorithm 1 returns the reachability graph RG when taking
as input the symbolic security-sensitive transition system
S = (VCF ∪ VAuth ∪ VUser,EvS) and the final state for-
mula F , then the set of all symbolic behaviors of S is the
set of labeled paths in RG starting with a node labeled by a
formula whose conjunction with I is satisfiable and ending
with a node labeled by F .

The proof of this theorem uses the definition of wlp and
the properties discussed above about the auxiliary functions
subsumed and connect. It is possible to show that Algo-
rithm 1 always terminates by adapting the results in [8].

3.2 On-line
Theorem 3.2 implies that starting from an initial state

(i.e. one satisfying the initial formula I) in the reachabil-
ity graph computed by Algorithm 1, it is always possible
to reach a final state (i.e. one satisfying the final formula
F). If no event can be enabled infinitely often without be-
ing executed—called strong fairness—then a final state is
eventually reached. (As observed in [25], the assumption
of strong fairness is reasonable in the context of workflow

management since decisions to execute tasks are under the
responsibility of applications or humans.) This is the key
to prove the following result, underlying the correctness of
the automated technique—to be described below—for ex-
tracting (part of) the monitor from the reachability graph
computed by Algorithm 1.

Theorem 3.3. Let S = (VCF ∪ VAuth ∪ VUser,EvS) be
a symbolic security-sensitive transition system and T =
(VCF∪VAuth,EvT) be the associated security-sensitive tran-
sition system for the finite set U ⊆ U of users. Fur-
thermore, let RG = (N,λ,E) be the symbolic reachabil-
ity graph computed by Algorithm 1 when taking as input
S and a final state formula F . If the state s satisfies a
formula λ[i] for some i ∈ N , then there exists a behavior

s0
t0(u0)→ s1

t1(u1)→ · · · sn−1
tn−1(un−1)−→ sn of T such that (i)

s0 = s, (ii) sn satisfies F , and (iii) (i, t(x), j) ∈ E with
t0 = t and s0(x) = u0.

Thus, if T is in state s and we want to know if a certain user
u0 can execute task t0 while guaranteeing that the authoriza-
tion constraints are satisfied and the workflow terminates,
it is sufficient to find a node of the reachability graph that
is satisfied by the s and one of the outgoing edges is labeled
by t0. Indeed, this is exactly the task a monitor is supposed
to perform! To make this operational, we observe that we
can associate the Datalog clause [10]

can do(u, t) ← Γ ∧ Ck[i]

for each node i ∈ N and edge (i, t(u), j) ∈ E, where Γ is
the conjunction of atoms of the form is user(x) for each
variable x in Ck[i] with RG = (N,λ,E) and

∨ni
k=1 Ck[i] is

the disjunctive normal form of λ[i]. Let D(RG) be the set
of Datalog clauses built in this way from the reachability
graph RG. (It is straightforward to check that D(RG) is
non-recursive; see [10] for a precise definition). Formally,
the addition of Γ is needed to make D(RG) a safe Data-
log program (see again [10] for a precise definition) so that
answering queries always terminates.

After building the Datalog program D(RG), it is straight-
forward to build a run-time monitor. Let U be a finite set
of users, A ⊆ VAuth be the sub-set of state variables at’s
modeling the interface to the concrete authorization policy
establishing if a user has the right to execute a task, and P be
a Datalog program formalizing an authorization policy (i.e.
P contains a clause of the form is user(u) for each u ∈ U
and clauses whose heads contain only the predicates in A).
We call P a Datalog authorization policy program over the
interface variables in VAuth. (How to write authorization
policies in Datalog is outside the scope of this paper, the in-
terested reader is pointed to [18].) Any assignment over the
states variables in VCF ∪ (VAuth−A) can be represented by
a set Σ of Datalog facts of the forms p, ¬p, ht(u), or ¬ht(u)
for p ∈ VCF and ht ∈ (VAuth − A). We call Σ a partial
Datalog state over the state variables in VCF ∪ (VAuth −A).

Theorem 3.4. Let S = (VCF ∪ VAuth ∪ VUser,EvS) be a
symbolic security-sensitive transition system, T = (VCF ∪
VAuth,EvT) be the associated security-sensitive transition
system for the finite set U ⊆ U of users, and RG = (N,λ,E)
be the symbolic reachability graph computed by Algorithm 1
when taking as input S and a final state formula F . Ad-
ditionally, let P be a Datalog authorization policy over the

Figure 4: Architecture of the implementation

interface variables in VAuth and Σ be a partial Datalog state.
A user u ∈ U can execute task t guaranteeing the satisfac-
tion of all authorization constraints and the termination of
the workflow iff the query can do(u, t) is answered positively
by the Datalog program D(RG) ∪ P ∪ Σ.

This is the main result of the paper and guarantees the cor-
rectness of our procedure to synthesize run-time monitors.
It is a consequence of the definition of Datalog authorization
policy program, partial Datalog state, and Theorem 3.3. No-
tice that when both D(RG) and P are non-recursive (strat-
ified) Datalog programs, queries can be answered very effi-
ciently in LogSpace and can be translated to SQL without
aggregate operators (such as AVG and COUNT).

4. EXPERIMENTS
We have implemented the technique for the automated

synthesis of monitors in a tool whose architecture is de-
picted in Figure 4. On the left (Off-line), we have a symbolic
model checker (mcmt [17]) that, given a symbolic transi-
tion system representing a workflow together with initial
and final formulae, computes the reachability graph accord-
ing to Algorithm 1. The graph is then passed to the Datalog
translator—implemented in Python (v2.7.5)—which creates
a Datalog program as explained in Section 3.2. On the right
of Figure 4 (On-line), we use pyDatalog (v0.14.5) as our
Datalog engine to answer authorization queries of the form
“can user u execute task t and guarantee the successful ter-
mination of the workflow?”.

For a first evaluation of the scalability of our tech-
nique, we focus on an important class of workflows en-
countered in practice, namely those designed according to
a hierarchical decomposition principle. The idea is to
split a complex workflow into subflows which are again de-
composed into smaller subflows up to a desired level of
detail. Several workflows management systems support
this style of workflow specification following an established
line of works in both academy (see, e.g., [23]) and in-
dustry (see, e.g., the “SAP Modeling Handbook,” avail-
able on-line at http://wiki.scn.sap.com/wiki/display/

ModHandbook/Process+Hierarchy). Hierarchic workflows
are structured according to the notion of task refinement,
i.e. a task can be refined into a subflow. To illustrate, the
workflow on the left of Figure 5 contains the task Bookings,
which can be refined by the workflow on the right of the
same picture. This means that by replacing task Bookings
with the workflow on the right of the figure, we derive the
workflow in Figure 1.

Besides fostering reuse and simplifying maintenance of
complex workflows, hierarchic specifications allow for the de-
velopment of a divide-and-conquer strategy when applying

http://wiki.scn.sap.com/wiki/display/ModHandbook/Process+Hierarchy
http://wiki.scn.sap.com/wiki/display/ModHandbook/Process+Hierarchy

Figure 5: Hierarchic specification of the trip request
example workflow (cf. Figure 1)

Algorithm 1. I.e., given a hierarchic workflow, it is possi-
ble to compute its monitor for the WSP by first computing
the monitors for each of the subflows separately and then
“gluing” them together. To understand what we mean by
“gluing,” let us consider the hierarchic workflow in Figure 5.
We run the Algorithm 1 first on the workflow on the left,
on that on the right, and we run the Datalog translator on
the resulting reachability graphs to obtain the Datalog pro-
grams D(RG l) and D(RGr), respectively. Let pli, p

l
f and

pri , p
r
f be the predicates corresponding to the initial and fi-

nal places of the Petri nets representing the workflows on
the left and on the right of Figure 5. The Datalog program
for the hierarchic workflow (equivalent to the workflow in
Figure 1) can be obtained by adding the clauses pri ← plf
(to transfer the control flow from the workflow on the left to
that on the right) and pli ← prf (to transfer back the control
flow from the workflow on the right to that on the left) to
D(RG l)∪D(RGr) and finally removing the clauses in which
the identifier of the task Bookings occur. As can be seen in
the example, it is possible to have authorization constraints
that span different subflows. For each constraint in this case,
a literal ¬ht(u) is added to the corresponding transition in
the symbolic transition system. For instance, the SoD con-
straint (t1, t2, 6=) adds the literal ¬ht1(u) to the enabling
condition of t2. These literals are unconstrained when each
subflow is taken separately, but after the “gluing” process,
they act as any other constraint.

This modular approach to synthesizing monitors has been
implemented in our tool and is key to scalability. In fact,
without using hierarchic specifications, for a workflow with
up to 5 tasks, running Algorithm 1 (the most expensive step
of our technique) takes few seconds on a standard laptop; for
6 tasks, around a minute; and for 7 tasks, already two hours
and a half! Since hierarchic specifications are so important
for scalability, we have designed and implemented heuristics
that, given monolithic workflows, are capable of deriving
equivalent hierarchic specifications. For lack of space, we
leave their description to future work and assume in the
following that our tool is presented with hierarchic work-
flows. As observed above, hierarchic specifications of work-
flows are frequently available so that results from exper-
iments on them already give significant indications about
the efficiency of techniques for synthesizing run-time moni-
tors for the WSP.

4.1 Real-world workflows
We have experimented with some real-world workflows

taken from related works and present here two cases in
details. These examples show the expressiveness of our
approach and illustrate the use of all the basic control-
flow patterns (such as sequence and exclusive choice) be-
sides advanced patterns for arbitrary loops [26]. Figure 6
shows the two examples in extended BPM notation, where—
following [3]—the circles marked by the depiction of a user
leaving a door represent release points and the gray lines
show the authorization constraints. A release point is a spe-
cial event whereby the history of executions of the workflow
is erased, so that authorization constraints can be handled
in loops.
Drug dispensation process [4] (left of Figure 6). The
execution of an instance of this workflow starts with a Pa-
tient requesting drugs to a Nurse (t1). The Nurse consults
the Patient’s record and sends it to a PrivacyAdvocate (t2),
who decides if this data should be anonymized (t3 and t4).
If the drug prescription has therapeutic notes, they must be
reviewed by a Therapist (t5) and in parallel, a Researcher
can add data related to experimental drugs (t6). In the
end a Pharmacist either approves or denies the process (t7)
and a Nurse carries out the related tasks: collect and dis-
pense the drugs (t9 and t10) or notify the Patient (t8). A
SoD constraint for this workflow, not shown in the Figure, is
(t1, t7, 6=): the same user cannot act as Patient and Pharma-
cist, so that a Pharmacist cannot dispense drugs to himself.

A workflow of this size (10 tasks) would be intractable
for our tool. Thus, we come up with a hierarchic specifi-
cation consisting of two subflows to be executed one after
the other; the former is refined to the subflow containing
tasks t1, ..., t4 and the latter the subflow with tasks t5, ...,
t10. According to some control flow operators, not all tasks
must be executed in the workflow for its successful termina-
tion. In fact, tasks t4, t5 and t6 may or may not be executed
depending on certain conditions (e.g., “anonymize?”) while
tasks t8 and t9 are mutually exclusive. To represent the de-
cisions that have to be taken to complete the workflow, we
create transitions for the various branches whose enabling
conditions depend on additional variables—called environ-
ment variables—modeling non-deterministic choices of the
environment. For instance, the fact that task t7 is followed
by the decision point approved? can be represented by the
following two transitions:

ttrue7 (u) = p6 ∧ p7 ∧ ¬dt7 ∧ app ∧ at7 ∧ ¬ht1(u) →
p6, p7, p10, dt7, ht7(u) := F, F, T, T, T

tfalse7 (u) = p6 ∧ p7 ∧ ¬dt7 ∧ ¬app ∧ at7 ∧ ¬ht1(u) →
p6, p7, p8, dt7, ht7(u) := F, F, T, T, T .

When the environment variable app is true (cf. ttrue7), tasks

t9 and t10 must be executed; when it is false (tfalse7), only
task t8 is executed. Besides permitting the precise represen-
tation of the control flow, environment variables allow for
writing final formulae differentiating between the alternative
execution. For example, assuming a Petri net representation
of the drug dispensation process that has a place p4 after t4
and before t5, we run the model checker on the first subflow
with the final formula

(¬p0 ∧ ¬p1 ∧ ... ∧ p4 ∧ dt1 ∧ dt2 ∧ dt3 ∧ dt4) ∨
(¬p0 ∧ ¬p1 ∧ ... ∧ ¬p4 ∧ dt1 ∧ dt2 ∧ dt3 ∧ ¬dt4) .

Dynamic Enforcement of Abstract Separation of Duty Constraints 13:7

Fig. 1. Drug dispensation process modeled in BPMN.

drugs to patients within a hospital. The drugs dispensed are either in an experimental
stage or are very expensive and therefore require special diligence.

Figure 1 shows a visualization of the drug dispensation workflow in the Business
Process Modeling Notation (BPMN) [OMG 2011]. For our case study, let T = {t1, . . . , t10},
where t1 refers to Request Drugs, t2 to Retrieve Patient Record, etc., as illustrated in
Figure 1. The set of users U and the set of roles R are shown in Figure 2. Let (UA1, PA)
be the initial RBAC configuration of our case study. The user assignment relation
UA1 is depicted in Figure 2, ignoring the dashed and dotted lines between users and
roles, for example, (Alice, Therapist) ∈ UA1 and (Alice, Pharmacist) ̸∈ UA1. The permission
assignment relation PA is illustrated in Figure 1 by means of BPMN annotations.
For example, only users acting in the role Nurse are authorized to execute t2 with
respect to (UA1, PA). We assigned only one role to each task but in general tasks can
be annotated with sets of roles.

An instance of the drug dispensation workflow is started by a Patient who requests
drugs by handing his prescription to a Nurse. The Nurse retrieves the patient’s record
from the hospital’s database and forwards all data to a PrivacyAdvocate who checks
whether the patient’s data must be anonymized. If anonymization is required, this is
done by a computer program. We ignore this task in our forthcoming discussion as we
focus on human tasks. If therapeutic notes are contained in the prescription, they are
reviewed by a Therapist. In parallel, research-related data is added by a Researcher if
the requested drugs are in an experimental stage. Finally, a Pharmacist either approves
the dispensation and a Nurse collects the drugs from the stock and gives them to the
patient, or he denies the dispensation and a Nurse informs the Patient accordingly.

We model the drug dispensation workflow in CSP as the following workflow process.

W = t1.u1 : U → t2.u2 : U → t3.u3 : U →
(
(W1 ||| W2) ; W3

)
,

W1 = SKIP ⊓ (t5.u5 : U → SKIP),

W2 = SKIP ⊓ (t6.u6 : U → SKIP),

W3 = t7.u7 : U →
(
(t8.u8 : U → SKIP) ⊓ (t9.u9 : U → t10.u10 : U → SKIP)

)
.

Because we do not model data-flow, we overapproximate gateway decisions, such as
whether therapeutical notes must be reviewed, with CSP’s internal-choice operator

ACM Transactions on Information and System Security, Vol. 15, No. 3, Article 13, Publication date: November 2012.

Basin etal. / Obstruction-free authorization enforcement 7

Figure 4: The collateral evaluation workflow modelled in BPMN

3.1 Workflows
There are numerous translations from BPMN and similar workflow modeling languages to process
calculi such as CSP [37] or the ⇡-calculus [22]. The technical differences are unimportant for our
work here and we use a straightforward translation to CSP, illustrated in our running example.

For the reminder of this article, assume a set of tasks T and a set of points O. Points are used to
model BPMN events. We formalize workflows at the control-flow level using CSP as follows.

Definition 1 (Workflow process) A workflow process is a process W such that T(W) ✓ (T [O)⇤X.

In other words, a workflow process may engage in tasks, points, and finally the event X. We give
below an example workflow, visualized in BPMN, and a corresponding workflow process. This
workflow serves as a running example for the remainder of this article.

Example 1 (Collateral Evaluation Workflow) The financial industry distinguishes between secured
and unsecured loans. In a secured loan, the borrower pledges some asset, such as a house or a car, as
collateral for his debt. If the borrower defaults, the creditor takes possession of the asset to mitigate
his financial loss.

Figure 4 shows a BPMN model of the collateral evaluation workflow, which we adopted from
IBM’s Information FrameWork [14]. Ignore the gray BPMN elements for the moment. This work-
flow is executed by a financial institution to evaluate, accept, and prepare the safeguarding of the
collateral that a borrower pledges in return for a secured loan.

For this example, let T = {t1, . . . , t5} where t1 refers to Compute Market Value, t2 to
Control Computation, etc., and O = {o1, o2, o3}, as shown in Figure 4. The workflow process W
models the collateral evaluation workflow in CSP.

W = (P1 ||| P2) ; (t5 ! ((o2 !W) u SKIP))
P1 = t1 ! t2 ! ((o1 ! P1) u SKIP)
P2 = o3 ! t3 ! ((t4 ! SKIP) u SKIP)

We do not model data-flow in our example and therefore overapproximate gateway decisions with
CSP’s internal choice operator u . ⇧

Next, we model the execution of workflows at the task-execution level. For the reminder of this
article, let U be the set of users. For a task t and a user u, the CSP event t.u models the execution
of an instance of t by u. We call t.u a (task) execution event. Let X = {t.u | t 2 T , u 2 U} be
the set of all execution events. The auxiliary relation ⇡ = {(t.u, t) | t 2 T , u 2 U} maps every

Figure 6: Left: Drug dispensation process from [4]. Right: Collateral evaluation workflow, from [3]

A similar final formula can be derived for the second subflow.
The reachability graph computed for the first subflow con-

tains 200 nodes while that for second 231 nodes. Using a
MacBook laptop (see below for a detailed description of its
configuration), the time spent to compute the reachability
graph and translate it to a Datalog program is around 15s
(roughly, 3s for the first and 12s for the second). The time
taken by the synthesized monitor to answer access requests
is almost negligible.
Collateral evaluation workflow [3] (right of Figure 6).
It is executed to evaluate a collateral pledge for a loan. The
main difference with the previous workflow is the presence
of loops, exemplified by the decision points Computation
correct? and Approved?. This workflow has only 5 tasks, so
we do not need to transform it to an equivalent hierarchic
specification. Similarly to conditionals, we add environment
variables to model decision points and suitable transitions
for loops. For instance, task t2 is followed by the decision
point—encoded by the environment variable l1—of the first
loop which can be represented by transitions ttrue2 when l1
is true and the loop is taken and tfalse2 when l1 is false
and the loop is not taken. The enabling condition of the
transitions are analogous to what was shown above while
the updates take into account the use of release points when
updating the history variables ht’s in order to support the
use of authorization constraints in loops as discussed in [3].

The reachability graph for the collateral evaluation pro-
cess has 135 nodes and the time spent for computing it is
around 4s. As before, answering authorization constraints
in the on-line phase is immediate.

4.2 Synthetic benchmarks
To test the scalability of our approach, we have extended

the generator of random workflows used in [12]1 to produce
hierarchic workflows. Our generator has the following pa-
rameters: nw, the number of subflows and ntw, the number
of tasks in each subflow (nt = nw · ntw is the total num-
ber of tasks; nu, the number of users; pa, the authorization
density which is the ratio, expressed as a percentage, be-
tween the cardinality of

⋃
t{at(u) = true|u is a user} and

nt · nu (where t ranges over the set of tasks); and pc, the
constraint density which is the ration between the number
of SoD constraints in the set C and nt.

The generator also produces random (finite) sequences
(r0, r1, ..., rn) of authorization requests where ri = (t, u) for
t a task and u a user, encoding the question “can u per-

1We would like to thank the authors for sharing their source
code with us.

form task t according to the authorization policy specified
by the at’s and the constraints in C while guaranteeing its
termination?”

According to our experience with real-world workflows (cf.
Section 4.1), we set ntw to 5 and increase the number nw of
subflows so that the total number nt of tasks in the gener-
ated workflows range from 10 to 500 (notice that [12] consid-
ers workflows with at most 150 tasks). More precisely, we
let nt = 10, 20, ..., 150, 200, 250, ..., 500 and, following [12],
nu = nt, pa = 100%, 50%, 10%, pc = 5%, 10%, 20%.

Figure 7 shows the behavior of our prototype tool, for the
off-line (left) and on-line (right) phases, on the hierarchic
workflows produced by the random generator with the pa-
rameters described above. The x-axis shows the number nt
of task in the workflow, the y-axis the timings in seconds,
each line corresponds to different values for the pair (pa, pc)
of parameters (recall that nu = nt). The timings are ob-
tained on a MacBook 2014 laptop with a 1.3GHz dual-core
Intel Core i5 processor and 8GB of RAM, running MAC OS
X 10.9.4.

It is clear that the computation time of our tool in both
the on-line and off-line phases is linear in the number of tasks
in the workflows for any value of the pair (pa, pc) of param-
eters. For the off-line phase, this is so because of the divide-
and-conquer strategy described above and supported by hi-
erarchic workflows. For the on-line phase, the linear growth
is due to the fact that the synthesized Datalog programs
belong to a class whose requests can be answered in linear-
time. Notice also that that for workflows with nt ≤ 200, the
(median) time to answer a request is under 1 second while
for workflows with 200 < nt ≤ 500, it is around 1.6 seconds.
This clearly demonstrates that the monitors synthesized by
our tool are suitable to be used on-line.

To give an idea of the distribution of the answers given
by the synthesized monitors to the randomly generated
sequences of authorization requests, Figure 8 shows the
number of denied (in red) and granted (in green) requests
(y-axis) for workflows with nt = 10, ..., 400 (x-axis) and
(pa, pc) = (10, 20) (the number shown on the x-axis must
be multiplied by 10 to obtain the number of tasks in the
workflow). We believe that these results clearly show the
scalability and practical applicability of our approach on the
important class of hierarchically specified workflows.

5. RELATED WORK
Verification of array-based systems. Model Check-

ing Modulo Theories [16] is an approach for the verification
of array-based systems based on the computation of pre-

Figure 7: Total run-time of off-line (left) and online (right) phase by the number of tasks in all configurations

Figure 8: Number of granted (green) and de-
nied (red) requests for increasing values of nt with
(pa, pc) = (10, 20)

images of a set of states using first-order formulae and on
reducing fix-point checks to SMT solving. This approach is
implemented by the model checker mcmt [17]. The link be-
tween array-based systems and security-sensitive workflows
was given in [8], where composed array-based systems rep-
resent security-sensitive workflows, with a terminating pro-
cedure for the verification of reachability properties for this
class of systems.

Workflow Satisfiability. Bertino et al. [6] described the
specification and enforcement of authorization constraints
in workflow management systems, presenting constraints as
clauses in a logic program and an exponential algorithm
for assigning users and roles to tasks without violating
them, but considering only linear workflows. Crampton [11]
showed another model for specifying constraints, considering
workflows as DAGs, and an algorithm to determine whether
there is an assignment of users to tasks that satisfies the
constraints, showing that it can be incorporated into a ref-
erence monitor. [13] extended the previous work to consider
the effects of delegation on satisfiability, showing algorithms
to only allow delegations that can still satisfy a workflow.
Crampton et al. [12] used model checking on an NP-complete
fragment of linear temporal logic to decide the satisfiability
of workflow instances. The authors presented three differ-
ent encodings in LTL(F) that can compute a set of solutions,
minimal user bases and a safe bound on resiliency. The syn-
thesis of monitors was left as future work.

Wang and Li [27] proposed a role-and-relation based ac-
cess control model that allows to describe the relationships
between users and thus specify complex authorization con-
straints. The authors showed that the WSP is NP-complete
in their model and that this intractability is inherent in
authorization systems supporting simple constraints. They
showed that with only equality and inequality relations, us-
ing the number of tasks as a parameter renders the WSP
fixed-parameter tractable. They also reduced the problem
to SAT. Yang et al. [20] studied the complexity of several
formulations of the WSP, considering the possibility of dif-
ferent control-flow patterns, and showed that, in general, the
problem is intractable.

Basin et al. [5] considered the problem of choosing autho-
rization policies that allow a successful workflow execution
and an optimal balance between system protection and user
empowerment. They treat the problem as an optimization
problem (finding the cost-minimizing authorization policy
that allows a successful workflow execution) and show that,
in the role-based case, it is NP-complete. They generalize
the decision problem of whether a given authorization pol-
icy allows a successful workflow execution to the notion of
an optimal authorization policy that satisfies this property.
In a following work, Basin et al. [4] used the Separation of
Duties Algebra (SoDA) to enforce SoD constraints in a dy-
namic, service-oriented enterprise environment. The authors
generalized SoDA’s semantics to workflow traces that satisfy
a term and refined it for control-flow and role-based autho-
rizations. Their formalization, based on CSP, is the base
for provisioning SoD as a Service, with an implementation
using a workflow engine and a SoD enforcement monitor. [4]
is the closest to us in terms of monitor implementation, but
their monitor only verifies if a trace of a workflow satisfies
a SoDA term, being incapable of checking whether there is
a future trace that can be concatenated in order to satisfy
the workflow.

This work. This work extends the results in [7, 9] by
describing a fully automated technique, arguing its correct-
ness, providing an implementation, and a thorough experi-
mental evaluation. The main advantages of our work with
respect to the others discussed above is the specification of
the security-sensitive workflows as array-based systems, the
consideration of an off-line and an on-line phase and the
composition of sub- workflows. These three characteristics
allow us to efficiently compute all terminating executions of
large instances of workflows for a finite but unbounded num-
ber of users and then translate it to a Datalog program that
acts as an efficient run-time monitor.

6. CONCLUSIONS
We have introduced and implemented a precise technique

to automatically synthesize run-time monitors capable of en-
suring the successful termination of workflows while enforc-
ing authorization policies and SoD constraints, thus solving
the run-time version of the WSP. It consists of an off-line
phase in which we compute a symbolic representation of all
possible behaviors of a workflow and an on-line phase in
which the monitor is derived from such a symbolic represen-
tation. An advantage of the technique is that changes in the
policies can be taken into account without re-running the
off-line phase since only an abstract interface to policies is
required. The interface is refined to the concrete policy only
in the on-line phase. We have also described the assump-
tions for the correctness of the technique (cf. Theorem 3.4).
An extensive experimental evaluation with an implementa-
tion of the technique shows the scalability of our approach
on the important class of hierarchic workflows.

As future work, we plan to present a detailed descrip-
tion of our heuristics to obtain equivalent hierarchic spec-
ification of monolithic workflows. This would allows us to
enlarge the scope of applicability of our approach even fur-
ther. We also intend to integrate our prototype in avail-
able workflow execution engines—e.g., the one available in
the SAP HANA platform (http://www.sap.com/hana)—to
collect data about the performances of our monitors on real
workflows, and compare the results with those in this paper.
This would be an important step towards the creation of a
library of benchmarks to set a standard for the evaluation
of workflow analysis techniques.

7. REFERENCES

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay.
General decidability theorems for infinite-state
systems. In Proc. of LICS, pages 313–321, 1996.

[2] A. Armando and S. E. Ponta. Model Checking of
Security-sensitive Business Processes. In 6th Int. Ws.
on Formal Aspects in Security and Trust (FAST),
2009.

[3] D. Basin, S. J. Burri, and G. Karjoth. Obstruction-free
authorization enforcement: Aligning security with
business objectives. In Proc. of CSF’11, pages 99–113,
Washington, DC., 2011. IEEE Computer Society.

[4] D. Basin, S. J. Burri, and G. Karjoth. Dynamic
enforcement of abstract separation of duty constraints.
ACM TISSeC, 15(3):13:1–13:30, Nov. 2012.

[5] D. Basin, S. J. Burri, and G. Karjoth. Optimal
workflow-aware authorizations. In Proc. of SACMAT
’12, pages 93–102, New York, NY, 2012. ACM.

[6] E. Bertino, E. Ferrari, and V. Atluri. The specification
and enforcement of authorization constraints in
workflow management systems. TISSeC, 2:65–104,
1999.

[7] C. Bertolissi and S. Ranise. A Methodology to build
run-time Monitors for Security-Aware Workflows. In
Proc. of ICITST’13. IEEE, 2013.

[8] C. Bertolissi and S. Ranise. Verification of Composed
Array-based Systems with Applications to
Security-Aware Workflows. In Proc. of FROCOS’13.
Springer, 2013.

[9] C. Bertolissi and S. Ranise. A smt–based methodology
for monitoring of security–aware workflows. Int. J. of
ITST, 5(3):275–290, 01 2014.

[10] S. Ceri, G. Gottlob, and L. Tanca. What You Always
Wanted to Know About Datalog (And Never Dared to
Ask). IEEE TKDE, 1(1):146–166, 1989.

[11] J. Crampton. A reference monitor for workflow
systems with constrained task execution. In 10th ACM
SACMAT, pages 38–47. ACM, 2005.

[12] J. Crampton, M. Huth, and J.-P. Kuo. Authorized
workflow schemas: deciding realizability through ltl(f)
model checking. STTT, 16(1):31–48, 2014.

[13] J. Crampton and H. Khambhammettu. Delegation
and satisfiability in workflow systems. In SACMAT,
pages 31–40, New York, NY, USA, 2008. ACM.

[14] E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall, 1976.

[15] H. B. Enderton. A Mathematical Introduction to
Logic. Academic Press, New York-London, 1972.

[16] S. Ghilardi and S. Ranise. Backward reachability of
array-based systems by SMT solving: Termination and
invariant synthesis. In LMCS, Vol. 6, Issue 4, 2010.

[17] S. Ghilardi and S. Ranise. MCMT: A Model Checker
Modulo Theories. In IJCAR, volume 6173 of LNCS,
pages 22–29, 2010.

[18] N. Li and J. C. Mitchell. Datalog with constraints: a
foundation for trust management languages. In
PADL’03, pages 58–73, 2003.

[19] T. Murata. Petri nets: properties, analysis and
applications. Proc. of the IEEE, 77(4):541–580, 1989.

[20] I. R. P. Yang, X. Xie and S. Lu. Satisfiability analysis
of workflows with control-flow patterns and
authorization constraints. IEEE TSC, 99, 2013.

[21] S. Sankaranarayanan, H. Sipma, and Z. Manna. Petri
net analysis using invariant generation. In In
Verification: Theory and Practice, LNCS 2772, pages
682–701. Springer Verlag, 2003.

[22] A. U. Shankar. An Introduction to Assertional
Reasoning for Concurrent Systems. ACM Comput.
Surv., 25(3):225–262, Sept. 1993.

[23] W. van der Aalst. Workflow verification: Finding
control-flow errors using petri-net-based techniques. In
Business Process Management, volume 1806 of LNCS,
pages 161–183. Springer, 2000.

[24] W. van der Aalst and A. H. M. T. Hofstede. Yawl:
Yet another workflow language. Inf. Systems,
30:245–275, 2003.

[25] W. van der Aalst, K. van Hee, A. ter Hofstede,
N. Sidorova, H. Verbeek, M. Voorhoeve, and
M. Wynn. Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects of Comp.,
23(3):333–363, 2011.

[26] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede,
B. Kiepuszewski, and A. P. Barros. Workflow patterns.
Distrib. Parallel Databases, 14(1):5–51, July 2003.

[27] Q. Wang and N. Li. Satisfiability and resiliency in
workflow authorization systems. TISSeC,
13:40:1–40:35, December 2010.

http://www.sap.com/hana

	Introduction
	A Trip Request Example
	Off-line phase
	On-line phase

	Automated synthesis of run-time monitors
	Off-line
	On-line

	Experiments
	Real-world workflows
	Synthetic benchmarks

	Related work
	Conclusions
	References

